configs
This commit is contained in:
parent
71634a21c7
commit
80454667da
2 changed files with 363 additions and 0 deletions
|
@ -0,0 +1,149 @@
|
|||
model:
|
||||
base_learning_rate: 7.5e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: hybrid # important
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "__improvedaesthetic__"
|
||||
batch_size: 2
|
||||
num_workers: 4
|
||||
multinode: True
|
||||
min_size: 512
|
||||
max_pwatermark: 0.8
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{17280..17535}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddMask
|
||||
params:
|
||||
mode: "512train-large"
|
||||
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 2000
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
disabled: False
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
ddim_steps: 100 # todo check these out for inpainting,
|
||||
ddim_eta: 1.0 # todo check these out for inpainting,
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 2
|
214
configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml
Normal file
214
configs/stable-diffusion/upscaling/upscale-v1-with-f16.yaml
Normal file
|
@ -0,0 +1,214 @@
|
|||
model:
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||
params:
|
||||
low_scale_key: "lr"
|
||||
linear_start: 0.001
|
||||
linear_end: 0.015
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 32
|
||||
channels: 16
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: "hybrid-adm"
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.22765929 # magic number
|
||||
|
||||
low_scale_config:
|
||||
target: ldm.modules.encoders.modules.LowScaleEncoder
|
||||
params:
|
||||
scale_factor: 0.18215
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
timesteps: 1000
|
||||
max_noise_level: 250
|
||||
output_size: null
|
||||
model_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
num_classes: 251 # timesteps for noise conditoining
|
||||
image_size: 64 # not really needed
|
||||
in_channels: 20
|
||||
out_channels: 16
|
||||
model_channels: 128
|
||||
attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 6, 8 ]
|
||||
# -> res, ds: (64, 1), (32, 2), (16, 4), (6, 8), (4, 16)
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 16
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f16/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ 16 ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
#data: # TODO: finetune here later
|
||||
# target: ldm.data.laion.WebDataModuleFromConfig
|
||||
# params:
|
||||
# tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
|
||||
# batch_size: 10
|
||||
# num_workers: 4
|
||||
# train:
|
||||
# shards: '{00000..17279}.tar -'
|
||||
# shuffle: 10000
|
||||
# image_key: jpg
|
||||
# image_transforms:
|
||||
# - target: torchvision.transforms.Resize
|
||||
# params:
|
||||
# size: 1024
|
||||
# interpolation: 3
|
||||
# - target: torchvision.transforms.RandomCrop
|
||||
# params:
|
||||
# size: 1024
|
||||
# postprocess:
|
||||
# target: ldm.data.laion.AddLR
|
||||
# params:
|
||||
# factor: 2
|
||||
#
|
||||
# # NOTE use enough shards to avoid empty validation loops in workers
|
||||
# validation:
|
||||
# shards: '{17280..17535}.tar -'
|
||||
# shuffle: 0
|
||||
# image_key: jpg
|
||||
# image_transforms:
|
||||
# - target: torchvision.transforms.Resize
|
||||
# params:
|
||||
# size: 1024
|
||||
# interpolation: 3
|
||||
# - target: torchvision.transforms.CenterCrop
|
||||
# params:
|
||||
# size: 1024
|
||||
# postprocess:
|
||||
# target: ldm.data.laion.AddLR
|
||||
# params:
|
||||
# factor: 2
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "__improvedaesthetic__"
|
||||
batch_size: 28
|
||||
num_workers: 4
|
||||
multinode: True
|
||||
min_size: 512
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddLR
|
||||
params:
|
||||
factor: 2
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{17280..17535}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddLR
|
||||
params:
|
||||
factor: 2
|
||||
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 2
|
Loading…
Reference in a new issue