ready to slurm

This commit is contained in:
Patrick Esser 2022-07-06 22:52:16 +00:00 committed by pesser
parent cde78c3ead
commit 6c939d631f
5 changed files with 91 additions and 2 deletions

View file

@ -106,6 +106,12 @@ data:
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
@ -124,7 +130,6 @@ lightning:
unconditional_guidance_label: [""]
trainer:
#replace_sampler_ddp: False
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0

View file

@ -1,5 +1,5 @@
albumentations==0.4.3
opencv-python==4.1.2.30
opencv-python
pudb==2019.2
imageio==2.9.0
imageio-ffmpeg==0.4.2

26
scripts/slurm/README.md Normal file
View file

@ -0,0 +1,26 @@
# Example
Resume f8 @ 512 on Laion-HR
```
sbatch scripts/slurm/resume_512/sbatch.sh
```
# Reuse
To reuse this as a template, copy `sbatch.sh` and `launcher.sh` somewhere. In
`sbatch.sh`, adjust the lines
```
#SBATCH --job-name=stable-diffusion-512cont
#SBATCH --nodes=24
```
and the path to your `launcher.sh` in the last line,
```
srun bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh
```
In `launcher.sh`, adjust `CONFIG` and `EXTRA`. Maybe give it a test run with
debug flags uncommented and a reduced number of nodes.

View file

@ -0,0 +1,20 @@
#!/bin/bash
export NODE_RANK=${SLURM_NODEID}
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable
cd /fsx/stable-diffusion/stable-diffusion
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/256f8ft512-2022-06-15-pruned.ckpt"
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG

View file

@ -0,0 +1,38 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-512cont
#SBATCH --nodes=24
#SBATCH --gpus-per-node=8
#SBATCH --ntasks-per-node=1
#SBATCH --output=%x_%j.%n.out
# nccl / efa stuff
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# pytorch multinode vars
# node rank should be set in launcher script
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=11338
export WORLD_SIZE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo WORLD_SIZE=${WORLD_SIZE}
srun bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh