ready to slurm
This commit is contained in:
parent
cde78c3ead
commit
6c939d631f
5 changed files with 91 additions and 2 deletions
|
@ -106,6 +106,12 @@ data:
|
||||||
|
|
||||||
|
|
||||||
lightning:
|
lightning:
|
||||||
|
find_unused_parameters: False
|
||||||
|
|
||||||
|
modelcheckpoint:
|
||||||
|
params:
|
||||||
|
every_n_train_steps: 5000
|
||||||
|
|
||||||
callbacks:
|
callbacks:
|
||||||
image_logger:
|
image_logger:
|
||||||
target: main.ImageLogger
|
target: main.ImageLogger
|
||||||
|
@ -124,7 +130,6 @@ lightning:
|
||||||
unconditional_guidance_label: [""]
|
unconditional_guidance_label: [""]
|
||||||
|
|
||||||
trainer:
|
trainer:
|
||||||
#replace_sampler_ddp: False
|
|
||||||
benchmark: True
|
benchmark: True
|
||||||
val_check_interval: 5000000 # really sorry
|
val_check_interval: 5000000 # really sorry
|
||||||
num_sanity_val_steps: 0
|
num_sanity_val_steps: 0
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
albumentations==0.4.3
|
albumentations==0.4.3
|
||||||
opencv-python==4.1.2.30
|
opencv-python
|
||||||
pudb==2019.2
|
pudb==2019.2
|
||||||
imageio==2.9.0
|
imageio==2.9.0
|
||||||
imageio-ffmpeg==0.4.2
|
imageio-ffmpeg==0.4.2
|
||||||
|
|
26
scripts/slurm/README.md
Normal file
26
scripts/slurm/README.md
Normal file
|
@ -0,0 +1,26 @@
|
||||||
|
# Example
|
||||||
|
|
||||||
|
Resume f8 @ 512 on Laion-HR
|
||||||
|
|
||||||
|
```
|
||||||
|
sbatch scripts/slurm/resume_512/sbatch.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
# Reuse
|
||||||
|
|
||||||
|
To reuse this as a template, copy `sbatch.sh` and `launcher.sh` somewhere. In
|
||||||
|
`sbatch.sh`, adjust the lines
|
||||||
|
|
||||||
|
```
|
||||||
|
#SBATCH --job-name=stable-diffusion-512cont
|
||||||
|
#SBATCH --nodes=24
|
||||||
|
```
|
||||||
|
|
||||||
|
and the path to your `launcher.sh` in the last line,
|
||||||
|
|
||||||
|
```
|
||||||
|
srun bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh
|
||||||
|
```
|
||||||
|
|
||||||
|
In `launcher.sh`, adjust `CONFIG` and `EXTRA`. Maybe give it a test run with
|
||||||
|
debug flags uncommented and a reduced number of nodes.
|
20
scripts/slurm/resume_512/launcher.sh
Normal file
20
scripts/slurm/resume_512/launcher.sh
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export NODE_RANK=${SLURM_NODEID}
|
||||||
|
echo "##########################################"
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo NODE_RANK=${NODE_RANK}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
echo "##########################################"
|
||||||
|
# debug environment worked great so we stick with it
|
||||||
|
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||||
|
# env with pip dependencies from stable diffusion's requirements.txt
|
||||||
|
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||||
|
conda activate stable
|
||||||
|
cd /fsx/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
|
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
|
||||||
|
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/256f8ft512-2022-06-15-pruned.ckpt"
|
||||||
|
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
||||||
|
|
||||||
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
38
scripts/slurm/resume_512/sbatch.sh
Normal file
38
scripts/slurm/resume_512/sbatch.sh
Normal file
|
@ -0,0 +1,38 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#SBATCH --partition=compute-od-gpu
|
||||||
|
#SBATCH --job-name=stable-diffusion-512cont
|
||||||
|
#SBATCH --nodes=24
|
||||||
|
#SBATCH --gpus-per-node=8
|
||||||
|
#SBATCH --ntasks-per-node=1
|
||||||
|
#SBATCH --output=%x_%j.%n.out
|
||||||
|
|
||||||
|
# nccl / efa stuff
|
||||||
|
module load intelmpi
|
||||||
|
source /opt/intel/mpi/latest/env/vars.sh
|
||||||
|
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||||
|
export NCCL_PROTO=simple
|
||||||
|
export PATH=/opt/amazon/efa/bin:$PATH
|
||||||
|
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||||
|
export FI_EFA_FORK_SAFE=1
|
||||||
|
export FI_LOG_LEVEL=1
|
||||||
|
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||||
|
export NCCL_DEBUG=info
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=0
|
||||||
|
export OMPI_MCA_mtl_base_verbose=1
|
||||||
|
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||||
|
export FI_PROVIDER=efa
|
||||||
|
export FI_EFA_TX_MIN_CREDITS=64
|
||||||
|
export NCCL_TREE_THRESHOLD=0
|
||||||
|
|
||||||
|
# pytorch multinode vars
|
||||||
|
# node rank should be set in launcher script
|
||||||
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||||
|
export MASTER_PORT=11338
|
||||||
|
export WORLD_SIZE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
||||||
|
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
|
||||||
|
srun bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh
|
Loading…
Reference in a new issue