sd inpainting eval script and demo

This commit is contained in:
Patrick Esser 2022-08-06 23:35:02 +00:00
parent 81d560ef1f
commit 693e713c3e
2 changed files with 201 additions and 4 deletions

View file

@ -114,20 +114,22 @@ def load_model_from_config(config, ckpt, verbose=False):
return model return model
if __name__ == "__main__": def run(
config="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml",
#ckpt="/fsx/robin/stable-diffusion/stable-diffusion/logs/2022-07-28T07-44-05_v1-finetune-for-inpainting-laion-aesthetic-larger-masks/checkpoints/last.ckpt",
ckpt="/fsx/robin/stable-diffusion/stable-diffusion/logs/2022-08-01T08-52-14_v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg/checkpoints/last.ckpt",
):
st.title("Stable Inpainting") st.title("Stable Inpainting")
state = init() state = init()
if not "model" in state: if not "model" in state:
config = "/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml"
ckpt = "/fsx/robin/stable-diffusion/stable-diffusion/logs/2022-07-24T16-01-27_v1-finetune-for-inpainting-laion-iaesthe/checkpoints/last.ckpt"
config = OmegaConf.load(config) config = OmegaConf.load(config)
model = load_model_from_config(config, ckpt) model = load_model_from_config(config, ckpt)
state["model"] = model state["model"] = model
uploaded_file = st.file_uploader("Upload image to inpaint") uploaded_file = st.file_uploader("Upload image to inpaint")
if uploaded_file is not None: if uploaded_file is not None:
image = Image.open(io.BytesIO(uploaded_file.getvalue())) image = Image.open(io.BytesIO(uploaded_file.getvalue())).convert("RGB")
width, height = image.size width, height = image.size
smaller = min(width, height) smaller = min(width, height)
crop = ( crop = (
@ -206,3 +208,8 @@ if __name__ == "__main__":
) )
st.text("Samples") st.text("Samples")
st.image(samples[0]) st.image(samples[0])
if __name__ == "__main__":
import fire
fire.Fire(run)

190
scripts/inpaint_sd.py Normal file
View file

@ -0,0 +1,190 @@
import argparse, os, sys, glob
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch
from main import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
def make_batch_ldm(image, mask, device):
image = np.array(Image.open(image).convert("RGB"))
image = image.astype(np.float32)/255.0
image = image[None].transpose(0,3,1,2)
image = torch.from_numpy(image)
mask = np.array(Image.open(mask).convert("L"))
mask = mask.astype(np.float32)/255.0
mask = mask[None,None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = (1-mask)*image
batch = {"image": image, "mask": mask, "masked_image": masked_image}
for k in batch:
batch[k] = batch[k].to(device=device)
batch[k] = batch[k]*2.0-1.0
return batch
def make_batch_sd(
image,
mask,
txt,
device):
# image hwc in -1 1
image = np.array(Image.open(image).convert("RGB"))
image = image[None].transpose(0,3,1,2)
image = torch.from_numpy(image).to(dtype=torch.float32)/127.5-1.0
mask = np.array(Image.open(mask).convert("L"))
mask = mask.astype(np.float32)/255.0
mask = mask[None,None]
mask[mask < 0.5] = 0
mask[mask >= 0.5] = 1
mask = torch.from_numpy(mask)
masked_image = image * (mask < 0.5)
batch = {
"jpg": image.to(device=device),
"txt": [txt],
"mask": mask.to(device=device),
"masked_image": masked_image.to(device=device),
}
return batch
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--indir",
type=str,
nargs="?",
help="dir containing image-mask pairs (`example.png` and `example_mask.png`)",
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
)
parser.add_argument(
"--steps",
type=int,
default=50,
help="number of ddim sampling steps",
)
parser.add_argument(
"--eta",
type=float,
default=0.0,
help="eta of ddim",
)
parser.add_argument(
"--scale",
type=float,
default=6.0,
help="scale of unconditional guidance",
)
parser.add_argument(
"--worldsize",
type=int,
default=1,
help="scale of unconditional guidance",
)
parser.add_argument(
"--rank",
type=int,
default=0,
help="scale of unconditional guidance",
)
parser.add_argument(
"--ckpt",
type=str,
default="/fsx/robin/stable-diffusion/stable-diffusion/logs/2022-08-01T08-52-14_v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg/checkpoints/last.ckpt",
help="scale of unconditional guidance",
)
opt = parser.parse_args()
assert opt.rank < opt.worldsize
mstr = "mask000.png"
masks = sorted(glob.glob(os.path.join(opt.indir, f"*_{mstr}")))
images = [x.replace(f"_{mstr}", ".png") for x in masks]
print(f"Found {len(masks)} inputs.")
#config = "models/ldm/inpainting_big/config.yaml"
config="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml"
config = OmegaConf.load(config)
model = instantiate_from_config(config.model)
#ckpt="models/ldm/inpainting_big/last.ckpt"
ckpt=opt.ckpt
model.load_state_dict(torch.load(ckpt)["state_dict"],
strict=False)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
sampler = DDIMSampler(model)
indices = [i for i in range(len(images)) if i % opt.worldsize == opt.rank]
images = [images[i] for i in indices]
masks = [masks[i] for i in indices]
os.makedirs(opt.outdir, exist_ok=True)
with torch.no_grad():
with model.ema_scope():
for image, mask in tqdm(zip(images, masks), total=len(images)):
outpath = os.path.join(opt.outdir, os.path.split(image)[1])
#batch = make_batch_ldm(image, mask, device=device)
##### unroll
batch = make_batch_sd(image, mask, txt="photograph of a beautiful empty scene, highest quality settings",
device=device)
c = model.cond_stage_model.encode(batch["txt"])
c_cat = list()
for ck in model.concat_keys:
cc = batch[ck].float()
if ck != model.masked_image_key:
bchw = (1, 4, 64, 64)
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
else:
cc = model.get_first_stage_encoding(model.encode_first_stage(cc))
c_cat.append(cc)
c_cat = torch.cat(c_cat, dim=1)
# cond
cond={"c_concat": [c_cat], "c_crossattn": [c]}
# uncond cond
uc_cross = model.get_unconditional_conditioning(1, "")
uc_full = {"c_concat": [c_cat], "c_crossattn": [uc_cross]}
shape = (model.channels, model.image_size, model.image_size)
samples_cfg, intermediates = sampler.sample(
opt.steps,
1,
shape,
cond,
verbose=False,
eta=opt.eta,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc_full,
)
x_samples_ddim = model.decode_first_stage(samples_cfg)
image = torch.clamp((batch["jpg"]+1.0)/2.0,
min=0.0, max=1.0)
mask = torch.clamp((batch["mask"]+1.0)/2.0,
min=0.0, max=1.0)
predicted_image = torch.clamp((x_samples_ddim+1.0)/2.0,
min=0.0, max=1.0)
inpainted = (1-mask)*image+mask*predicted_image
inpainted = inpainted.cpu().numpy().transpose(0,2,3,1)[0]*255
Image.fromarray(inpainted.astype(np.uint8)).save(outpath)