Merge branch 'main' of github.com:pesser/stable-diffusion into main

This commit is contained in:
rromb 2022-07-15 13:40:55 +02:00
commit 5c3f6795fa
14 changed files with 886 additions and 12 deletions

View file

@ -2,7 +2,6 @@ model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
ckpt_path: "/home/mchorse/stable-diffusion-ckpts/256pretrain-2022-06-09.ckpt"
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
@ -20,7 +19,7 @@ model:
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]

View file

@ -0,0 +1,135 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "__improvedaesthetic__"
batch_size: 4
num_workers: 4
multinode: True
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 512
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 2

View file

@ -0,0 +1,132 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.001
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 16
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.22765929 # magic number
# NOTE disabled for resuming
#scheduler_config: # 10000 warmup steps
# target: ldm.lr_scheduler.LambdaLinearScheduler
# params:
# warm_up_steps: [ 10000 ]
# cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
# f_start: [ 1.e-6 ]
# f_max: [ 1. ]
# f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 64 # not really needed
in_channels: 16
out_channels: 16
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 16
monitor: val/rec_loss
ddconfig:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ 16 ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
batch_size: 3
num_workers: 4
multinode: True
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 1024
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 1024
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 1024
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 1024
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 2000
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 2000
max_images: 2
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 2
unconditional_guidance_scale: 5.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000
num_sanity_val_steps: 0
accumulate_grad_batches: 4

View file

@ -0,0 +1,137 @@
model:
base_learning_rate: 8.e-05
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 32
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 416
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: [ 2, 2, 2, 2 ]
channel_mult: [ 1, 2, 4, 4 ]
disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "__improvedaesthetic__"
batch_size: 8
num_workers: 4
multinode: True
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 256
# # NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 256
lightning:
find_unused_parameters: false
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
params:
disabled: True
batch_frequency: 2500
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
#replace_sampler_ddp: False
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View file

@ -151,12 +151,7 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
if self.tar_base == "__improvedaesthetic__":
print("## Warning, loading the same improved aesthetic dataset "
"for all splits and ignoring shards parameter.")
urls = []
for i in range(1, 65):
for j in range(512):
for k in range(5):
urls.append(f's3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics/{i:02d}/{j:03d}/{k:05d}.tar')
tars = [f'pipe:aws s3 cp {url} -' for url in urls]
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
else:
tars = os.path.join(self.tar_base, dataset_config.shards)
@ -314,7 +309,8 @@ if __name__ == "__main__":
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
#config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
config = OmegaConf.load("configs/stable-diffusion/txt2img-v2-clip-encoder-improved_aesthetics-256.yaml")
datamod = WebDataModuleFromConfig(**config["data"]["params"])
dataloader = datamod.train_dataloader()

32
main.py
View file

@ -21,6 +21,9 @@ from ldm.data.base import Txt2ImgIterableBaseDataset
from ldm.util import instantiate_from_config
MULTINODE_HACKS = True
def get_parser(**parser_kwargs):
def str2bool(v):
if isinstance(v, bool):
@ -268,6 +271,9 @@ class SetupCallback(Callback):
os.makedirs(os.path.join(self.ckptdir, 'trainstep_checkpoints'), exist_ok=True)
print("Project config")
print(OmegaConf.to_yaml(self.config))
if MULTINODE_HACKS:
import time
time.sleep(5)
OmegaConf.save(self.config,
os.path.join(self.cfgdir, "{}-project.yaml".format(self.now)))
@ -278,7 +284,7 @@ class SetupCallback(Callback):
else:
# ModelCheckpoint callback created log directory --- remove it
if not self.resume and os.path.exists(self.logdir):
if not MULTINODE_HACKS and not self.resume and os.path.exists(self.logdir):
dst, name = os.path.split(self.logdir)
dst = os.path.join(dst, "child_runs", name)
os.makedirs(os.path.split(dst)[0], exist_ok=True)
@ -759,9 +765,19 @@ if __name__ == "__main__":
del callbacks_cfg['ignore_keys_callback']
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
if not "plugins" in trainer_kwargs:
trainer_kwargs["plugins"] = list()
if not lightning_config.get("find_unused_parameters", True):
from pytorch_lightning.plugins import DDPPlugin
trainer_kwargs["plugins"] = DDPPlugin(find_unused_parameters=False)
trainer_kwargs["plugins"].append(DDPPlugin(find_unused_parameters=False))
if MULTINODE_HACKS:
# disable resume from hpc ckpts
# NOTE below only works in later versions
# from pytorch_lightning.plugins.environments import SLURMEnvironment
# trainer_kwargs["plugins"].append(SLURMEnvironment(auto_requeue=False))
# hence we monkey patch things
from pytorch_lightning.trainer.connectors.checkpoint_connector import CheckpointConnector
setattr(CheckpointConnector, "hpc_resume_path", None)
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ###
@ -833,6 +849,18 @@ if __name__ == "__main__":
raise
if not opt.no_test and not trainer.interrupted:
trainer.test(model, data)
except RuntimeError as err:
if MULTINODE_HACKS:
import requests
import datetime
import os
import socket
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
hostname = socket.gethostname()
ts = datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
resp = requests.get('http://169.254.169.254/latest/meta-data/instance-id')
print(f'ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}', flush=True)
raise err
except Exception:
if opt.debug and trainer.global_rank == 0:
try:

218
scripts/checker.py Normal file
View file

@ -0,0 +1,218 @@
import os
import glob
import subprocess
import time
import fire
import numpy as np
from tqdm import tqdm
import torch
from pytorch_lightning import seed_everything
from omegaconf import OmegaConf
from ldm.util import instantiate_from_config
from ldm.models.diffusion.plms import PLMSSampler
from einops import rearrange
from torchvision.utils import make_grid
from PIL import Image
import contextlib
def load_model_from_config(config, ckpt, verbose=False):
pl_sd = torch.load(ckpt, map_location="cpu")
gs = pl_sd["global_step"]
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=True)
model.cuda()
model.eval()
return model, gs
def read_prompts(path):
with open(path, "r") as f:
prompts = f.read().splitlines()
return prompts
def split_in_batches(iterator, n):
out = []
for elem in iterator:
out.append(elem)
if len(out) == n:
yield out
out = []
if len(out) > 0:
yield out
class Sampler(object):
def __init__(self, out_dir, ckpt_path, cfg_path, prompts_path, shape, seed=42):
self.out_dir = out_dir
self.ckpt_path = ckpt_path
self.cfg_path = cfg_path
self.prompts_path = prompts_path
self.seed = seed
self.batch_size = 1
self.scale = 10
self.shape = shape
self.n_steps = 100
self.nrow = 8
@torch.inference_mode()
def sample(self, model, prompts, ema=True):
seed = self.seed
batch_size = self.batch_size
scale = self.scale
n_steps = self.n_steps
shape = self.shape
print("Sampling model.")
print("ckpt_path", self.ckpt_path)
print("cfg_path", self.cfg_path)
print("prompts_path", self.prompts_path)
print("out_dir", self.out_dir)
print("seed", self.seed)
print("batch_size", batch_size)
print("scale", scale)
print("n_steps", n_steps)
print("shape", shape)
prompts = list(split_in_batches(prompts, batch_size))
sampler = PLMSSampler(model)
all_samples = list()
ctxt = model.ema_scope if ema else contextlib.nullcontext
with ctxt():
for prompts_batch in tqdm(prompts, desc="prompts"):
uc = None
if scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
c = model.get_learned_conditioning(prompts_batch)
seed_everything(seed)
samples_latent, _ = sampler.sample(
S=n_steps,
conditioning=c,
batch_size=batch_size,
shape=shape,
verbose=False,
unconditional_guidance_scale=scale,
unconditional_conditioning=uc,
eta=0.0,
dynamic_threshold=None,
)
samples = model.decode_first_stage(samples_latent)
samples = torch.clamp((samples+1.0)/2.0, min=0.0, max=1.0)
all_samples.append(samples)
all_samples = torch.cat(all_samples, 0)
return all_samples
@torch.inference_mode()
def __call__(self):
config = OmegaConf.load(self.cfg_path)
model, global_step = load_model_from_config(config, self.ckpt_path)
print(f"Restored model at global step {global_step}.")
prompts = read_prompts(self.prompts_path)
all_samples = self.sample(model, prompts, ema=True)
self.save_as_grid("grid_with_wings", all_samples, global_step)
all_samples = self.sample(model, prompts, ema=False)
self.save_as_grid("grid_without_wings", all_samples, global_step)
def save_as_grid(self, name, grid, global_step):
grid = make_grid(grid, nrow=self.nrow)
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
os.makedirs(self.out_dir, exist_ok=True)
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
name,
global_step,
0,
0,
)
grid_path = os.path.join(self.out_dir, filename)
Image.fromarray(grid.astype(np.uint8)).save(grid_path)
print(f"---> {grid_path}")
class Checker(object):
def __init__(self, ckpt_path, callback, wait_for_file=5, interval=60):
self._cached_stamp = 0
self.filename = ckpt_path
self.callback = callback
self.interval = interval
self.wait_for_file = wait_for_file
def check(self):
while True:
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
while True:
# try to wait until checkpoint is fully written
previous_stamp = stamp
time.sleep(self.wait_for_file)
stamp = os.stat(self.filename).st_mtime
if stamp != previous_stamp:
print(f"File is still changing. Waiting {self.wait_for_file} seconds.")
else:
break
self._cached_stamp = stamp
# file has changed, so do something...
print(f"{self.__class__.__name__}: Detected a new file at "
f"{self.filename}, calling back.")
self.callback()
else:
time.sleep(self.interval)
def run(prompts_path="scripts/prompts/prompts-with-wings.txt",
watch_log_dir=None, out_dir=None, ckpt_path=None, cfg_path=None,
H=256,
W=None,
C=4,
F=8,
wait_for_file=5,
interval=60):
if out_dir is None:
assert watch_log_dir is not None
out_dir = os.path.join(watch_log_dir, "images/checker")
if ckpt_path is None:
assert watch_log_dir is not None
ckpt_path = os.path.join(watch_log_dir, "checkpoints/last.ckpt")
if cfg_path is None:
assert watch_log_dir is not None
configs = glob.glob(os.path.join(watch_log_dir, "configs/*-project.yaml"))
cfg_path = sorted(configs)[-1]
if W is None:
assert H is not None
W = H
if H is None:
assert W is not None
H = W
shape = [C, H//F, W//F]
sampler = Sampler(out_dir, ckpt_path, cfg_path, prompts_path, shape=shape)
checker = Checker(ckpt_path, sampler, wait_for_file=wait_for_file, interval=interval)
checker.check()
if __name__ == "__main__":
fire.Fire(run)

View file

@ -0,0 +1,33 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-11T20-16-11_txt2img-1p4B-multinode-clip-encoder-high-res-512_improvedaesthetic/checkpoints/last.ckpt"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-improvedaesthetics
#SBATCH --nodes 20
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_improvedaesthetics/launcher.sh

View file

@ -0,0 +1,33 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v2_laionhr1024.yaml"
# resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-12T00-50-44_txt2img-multinode-clip-encoder-f16-1024-laion-hr/checkpoints/last.ckpt"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v2-laionhr1024
#SBATCH --nodes 20
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v2_laionhr1024/launcher.sh

View file

@ -0,0 +1,33 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable
cd /fsx/stable-diffusion/stable-diffusion
CONFIG=configs/stable-diffusion/v3_pretraining.yaml
# resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/rlogs/2022-07-11T22-57-10_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v3-pretraining
#SBATCH --nodes 44
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v3_pretraining/launcher.sh

View file

@ -40,7 +40,7 @@ def load_model_from_config(config, ckpt, verbose=False):
return model
if __name__ == "__main__":
def main():
parser = argparse.ArgumentParser()
parser.add_argument(
@ -258,3 +258,7 @@ if __name__ == "__main__":
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f"Sampling took {toc-tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
f" \nEnjoy.")
if __name__ == "__main__":
main()