512 config
This commit is contained in:
		
							parent
							
								
									7d432123d5
								
							
						
					
					
						commit
						58f2ba8a44
					
				
					 2 changed files with 147 additions and 1 deletions
				
			
		| 
						 | 
					@ -0,0 +1,131 @@
 | 
				
			||||||
 | 
					model:
 | 
				
			||||||
 | 
					  base_learning_rate: 1.0e-04
 | 
				
			||||||
 | 
					  target: ldm.models.diffusion.ddpm.LatentDiffusion
 | 
				
			||||||
 | 
					  params:
 | 
				
			||||||
 | 
					    linear_start: 0.00085
 | 
				
			||||||
 | 
					    linear_end: 0.0120
 | 
				
			||||||
 | 
					    num_timesteps_cond: 1
 | 
				
			||||||
 | 
					    log_every_t: 200
 | 
				
			||||||
 | 
					    timesteps: 1000
 | 
				
			||||||
 | 
					    first_stage_key: "jpg"
 | 
				
			||||||
 | 
					    cond_stage_key: "txt"
 | 
				
			||||||
 | 
					    image_size: 32
 | 
				
			||||||
 | 
					    channels: 4
 | 
				
			||||||
 | 
					    cond_stage_trainable: false   # Note: different from the one we trained before
 | 
				
			||||||
 | 
					    conditioning_key: crossattn
 | 
				
			||||||
 | 
					    monitor: val/loss_simple_ema
 | 
				
			||||||
 | 
					    scale_factor: 0.18215
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    scheduler_config: # 10000 warmup steps
 | 
				
			||||||
 | 
					      target: ldm.lr_scheduler.LambdaLinearScheduler
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        warm_up_steps: [ 10000 ]
 | 
				
			||||||
 | 
					        cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
 | 
				
			||||||
 | 
					        f_start: [ 1.e-6 ]
 | 
				
			||||||
 | 
					        f_max: [ 1. ]
 | 
				
			||||||
 | 
					        f_min: [ 1. ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    unet_config:
 | 
				
			||||||
 | 
					      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        image_size: 32
 | 
				
			||||||
 | 
					        in_channels: 4
 | 
				
			||||||
 | 
					        out_channels: 4
 | 
				
			||||||
 | 
					        model_channels: 320
 | 
				
			||||||
 | 
					        attention_resolutions: [ 4, 2, 1 ]
 | 
				
			||||||
 | 
					        num_res_blocks: 2
 | 
				
			||||||
 | 
					        channel_mult: [ 1, 2, 4, 4 ]
 | 
				
			||||||
 | 
					        num_heads: 8
 | 
				
			||||||
 | 
					        use_spatial_transformer: True
 | 
				
			||||||
 | 
					        transformer_depth: 1
 | 
				
			||||||
 | 
					        context_dim: 768
 | 
				
			||||||
 | 
					        use_checkpoint: True
 | 
				
			||||||
 | 
					        legacy: False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    first_stage_config:
 | 
				
			||||||
 | 
					      target: ldm.models.autoencoder.AutoencoderKL
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        embed_dim: 4
 | 
				
			||||||
 | 
					        monitor: val/rec_loss
 | 
				
			||||||
 | 
					        ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
 | 
				
			||||||
 | 
					        ddconfig:
 | 
				
			||||||
 | 
					          double_z: true
 | 
				
			||||||
 | 
					          z_channels: 4
 | 
				
			||||||
 | 
					          resolution: 256
 | 
				
			||||||
 | 
					          in_channels: 3
 | 
				
			||||||
 | 
					          out_ch: 3
 | 
				
			||||||
 | 
					          ch: 128
 | 
				
			||||||
 | 
					          ch_mult:
 | 
				
			||||||
 | 
					          - 1
 | 
				
			||||||
 | 
					          - 2
 | 
				
			||||||
 | 
					          - 4
 | 
				
			||||||
 | 
					          - 4
 | 
				
			||||||
 | 
					          num_res_blocks: 2
 | 
				
			||||||
 | 
					          attn_resolutions: []
 | 
				
			||||||
 | 
					          dropout: 0.0
 | 
				
			||||||
 | 
					        lossconfig:
 | 
				
			||||||
 | 
					          target: torch.nn.Identity
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cond_stage_config:
 | 
				
			||||||
 | 
					      target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					data:
 | 
				
			||||||
 | 
					  target: ldm.data.laion.WebDataModuleFromConfig
 | 
				
			||||||
 | 
					  params:
 | 
				
			||||||
 | 
					    tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
 | 
				
			||||||
 | 
					    batch_size: 50
 | 
				
			||||||
 | 
					    num_workers: 4
 | 
				
			||||||
 | 
					    multinode: True
 | 
				
			||||||
 | 
					    train:
 | 
				
			||||||
 | 
					      shards: '{00000..17279}.tar -'
 | 
				
			||||||
 | 
					      shuffle: 10000
 | 
				
			||||||
 | 
					      image_key: jpg
 | 
				
			||||||
 | 
					      image_transforms:
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.Resize
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 512
 | 
				
			||||||
 | 
					          interpolation: 3
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.RandomCrop
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 512
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # NOTE use enough shards to avoid empty validation loops in workers
 | 
				
			||||||
 | 
					    validation:
 | 
				
			||||||
 | 
					      shards: '{17280..17535}.tar -'
 | 
				
			||||||
 | 
					      shuffle: 0
 | 
				
			||||||
 | 
					      image_key: jpg
 | 
				
			||||||
 | 
					      image_transforms:
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.Resize
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 512
 | 
				
			||||||
 | 
					          interpolation: 3
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.CenterCrop
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 512
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lightning:
 | 
				
			||||||
 | 
					  callbacks:
 | 
				
			||||||
 | 
					    image_logger:
 | 
				
			||||||
 | 
					      target: main.ImageLogger
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        batch_frequency: 5000
 | 
				
			||||||
 | 
					        max_images: 4
 | 
				
			||||||
 | 
					        increase_log_steps: False
 | 
				
			||||||
 | 
					        log_first_step: False
 | 
				
			||||||
 | 
					        log_images_kwargs:
 | 
				
			||||||
 | 
					          use_ema_scope: False
 | 
				
			||||||
 | 
					          inpaint: False
 | 
				
			||||||
 | 
					          plot_progressive_rows: False
 | 
				
			||||||
 | 
					          plot_diffusion_rows: False
 | 
				
			||||||
 | 
					          N: 4
 | 
				
			||||||
 | 
					          unconditional_guidance_scale: 3.0
 | 
				
			||||||
 | 
					          unconditional_guidance_label: [""]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  trainer:
 | 
				
			||||||
 | 
					    #replace_sampler_ddp: False
 | 
				
			||||||
 | 
					    benchmark: True
 | 
				
			||||||
 | 
					    val_check_interval: 5000000  # really sorry
 | 
				
			||||||
 | 
					    num_sanity_val_steps: 0
 | 
				
			||||||
 | 
					    accumulate_grad_batches: 2
 | 
				
			||||||
| 
						 | 
					@ -253,4 +253,19 @@ def example01():
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
if __name__ == "__main__":
 | 
					if __name__ == "__main__":
 | 
				
			||||||
    example01()
 | 
					    #example01()
 | 
				
			||||||
 | 
					    from omegaconf import OmegaConf
 | 
				
			||||||
 | 
					    from torch.utils.data.distributed import DistributedSampler
 | 
				
			||||||
 | 
					    from torch.utils.data import IterableDataset
 | 
				
			||||||
 | 
					    from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
 | 
				
			||||||
 | 
					    from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
 | 
				
			||||||
 | 
					    datamod = WebDataModuleFromConfig(**config["data"]["params"])
 | 
				
			||||||
 | 
					    dataloader = datamod.train_dataloader()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for batch in dataloader:
 | 
				
			||||||
 | 
					        print(batch.keys())
 | 
				
			||||||
 | 
					        print(batch["jpg"].shape)
 | 
				
			||||||
 | 
					        break
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue