paint it in
This commit is contained in:
parent
76e2f4b739
commit
57c3a76346
1 changed files with 162 additions and 1 deletions
|
@ -1260,7 +1260,6 @@ class LatentDiffusion(DDPM):
|
|||
use_ema_scope=True,
|
||||
**kwargs):
|
||||
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
||||
|
||||
use_ddim = ddim_steps is not None
|
||||
|
||||
log = dict()
|
||||
|
@ -1582,6 +1581,168 @@ class LatentUpscaleDiffusion(LatentDiffusion):
|
|||
return log
|
||||
|
||||
|
||||
class LatentInpaintDiffusion(LatentDiffusion):
|
||||
"""
|
||||
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
||||
e.g. mask as concat and text via cross-attn.
|
||||
To disable finetuning mode, set finetune_keys to None
|
||||
"""
|
||||
def __init__(self,
|
||||
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight"),
|
||||
concat_keys=("mask", "masked_image"),
|
||||
masked_image_key="masked_image",
|
||||
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
||||
*args, **kwargs
|
||||
):
|
||||
ckpt_path = kwargs.pop("ckpt_path", None)
|
||||
ignore_keys = kwargs.pop("ignore_keys", list())
|
||||
super().__init__(*args, **kwargs)
|
||||
self.masked_image_key = masked_image_key
|
||||
assert self.masked_image_key in concat_keys
|
||||
self.finetune_keys = finetune_keys
|
||||
self.concat_keys = concat_keys
|
||||
self.keep_dims = keep_finetune_dims
|
||||
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
||||
if exists(ckpt_path):
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys)
|
||||
|
||||
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
||||
sd = torch.load(path, map_location="cpu")
|
||||
if "state_dict" in list(sd.keys()):
|
||||
sd = sd["state_dict"]
|
||||
keys = list(sd.keys())
|
||||
for k in keys:
|
||||
for ik in ignore_keys:
|
||||
if k.startswith(ik):
|
||||
print("Deleting key {} from state_dict.".format(k))
|
||||
del sd[k]
|
||||
|
||||
# make it explicit, finetune by including extra input channels
|
||||
if exists(self.finetune_keys) and k in self.finetune_keys:
|
||||
new_entry = None
|
||||
for name, param in self.named_parameters():
|
||||
if name in self.finetune_keys:
|
||||
print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
||||
new_entry = torch.zeros_like(param) # zero init
|
||||
assert exists(new_entry), 'did not find matching parameter to modify'
|
||||
new_entry[:, :self.keep_dims, ...] = sd[k]
|
||||
sd[k] = new_entry
|
||||
|
||||
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
||||
sd, strict=False)
|
||||
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||
if len(missing) > 0:
|
||||
print(f"Missing Keys: {missing}")
|
||||
if len(unexpected) > 0:
|
||||
print(f"Unexpected Keys: {unexpected}")
|
||||
|
||||
@torch.no_grad()
|
||||
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
||||
# note: restricted to non-trainable encoders currently
|
||||
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpaiting'
|
||||
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
||||
force_c_encode=True, return_original_cond=True, bs=bs)
|
||||
|
||||
assert exists(self.concat_keys)
|
||||
c_cat = list()
|
||||
for ck in self.concat_keys:
|
||||
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
||||
if bs is not None:
|
||||
cc = cc[:bs]
|
||||
cc = cc.to(self.device)
|
||||
bchw = z.shape
|
||||
if ck != self.masked_image_key:
|
||||
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
||||
else:
|
||||
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
||||
c_cat.append(cc)
|
||||
c_cat = torch.cat(c_cat, dim=1)
|
||||
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
||||
if return_first_stage_outputs:
|
||||
return z, all_conds, x, xrec, xc
|
||||
return z, all_conds
|
||||
|
||||
@torch.no_grad()
|
||||
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
||||
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
||||
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
||||
use_ema_scope=True,
|
||||
**kwargs):
|
||||
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
||||
use_ddim = ddim_steps is not None
|
||||
|
||||
log = dict()
|
||||
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
||||
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
||||
N = min(x.shape[0], N)
|
||||
n_row = min(x.shape[0], n_row)
|
||||
log["inputs"] = x
|
||||
log["reconstruction"] = xrec
|
||||
if self.model.conditioning_key is not None:
|
||||
if hasattr(self.cond_stage_model, "decode"):
|
||||
xc = self.cond_stage_model.decode(c)
|
||||
log["conditioning"] = xc
|
||||
elif self.cond_stage_key in ["caption", "txt"]:
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
||||
log["conditioning"] = xc
|
||||
elif self.cond_stage_key == 'class_label':
|
||||
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
||||
log['conditioning'] = xc
|
||||
elif isimage(xc):
|
||||
log["conditioning"] = xc
|
||||
if ismap(xc):
|
||||
log["original_conditioning"] = self.to_rgb(xc)
|
||||
|
||||
if plot_diffusion_rows:
|
||||
# get diffusion row
|
||||
diffusion_row = list()
|
||||
z_start = z[:n_row]
|
||||
for t in range(self.num_timesteps):
|
||||
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
||||
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
||||
t = t.to(self.device).long()
|
||||
noise = torch.randn_like(z_start)
|
||||
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
||||
diffusion_row.append(self.decode_first_stage(z_noisy))
|
||||
|
||||
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
||||
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
||||
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
||||
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
||||
log["diffusion_row"] = diffusion_grid
|
||||
|
||||
if sample:
|
||||
# get denoise row
|
||||
with ema_scope("Sampling"):
|
||||
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
||||
batch_size=N, ddim=use_ddim,
|
||||
ddim_steps=ddim_steps, eta=ddim_eta)
|
||||
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
||||
x_samples = self.decode_first_stage(samples)
|
||||
log["samples"] = x_samples
|
||||
if plot_denoise_rows:
|
||||
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
||||
log["denoise_row"] = denoise_grid
|
||||
|
||||
if unconditional_guidance_scale > 1.0:
|
||||
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
||||
uc_cat = c_cat
|
||||
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
||||
with ema_scope("Sampling with classifier-free guidance"):
|
||||
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
||||
batch_size=N, ddim=use_ddim,
|
||||
ddim_steps=ddim_steps, eta=ddim_eta,
|
||||
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||
unconditional_conditioning=uc_full,
|
||||
)
|
||||
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
||||
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
||||
|
||||
log["masked_image"] = rearrange(batch["masked_image"],
|
||||
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
||||
return log
|
||||
|
||||
|
||||
class Layout2ImgDiffusion(LatentDiffusion):
|
||||
# TODO: move all layout-specific hacks to this class
|
||||
def __init__(self, cond_stage_key, *args, **kwargs):
|
||||
|
|
Loading…
Reference in a new issue