improve efficiency for upscaler
This commit is contained in:
parent
fe081960ca
commit
4155b51d1f
3 changed files with 14 additions and 8 deletions
|
@ -1,5 +1,5 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
base_learning_rate: 5.0e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||
params:
|
||||
low_scale_key: "lr"
|
||||
|
@ -66,10 +66,11 @@ model:
|
|||
image_size: 64 # not really needed
|
||||
in_channels: 20
|
||||
out_channels: 16
|
||||
model_channels: 192
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
model_channels: 96
|
||||
attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
channel_mult: [ 1, 2, 4, 8, 8 ]
|
||||
# -> res, ds: (64, 1), (32, 2), (16, 4), (8, 8), (4, 16)
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
|
@ -105,7 +106,7 @@ data:
|
|||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
|
||||
batch_size: 8
|
||||
batch_size: 10
|
||||
num_workers: 4
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
|
@ -143,6 +144,8 @@ data:
|
|||
factor: 4
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
|
|
|
@ -253,9 +253,9 @@ class SpatialTransformer(nn.Module):
|
|||
x_in = x
|
||||
x = self.norm(x)
|
||||
x = self.proj_in(x)
|
||||
x = rearrange(x, 'b c h w -> b (h w) c')
|
||||
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
|
||||
for block in self.transformer_blocks:
|
||||
x = block(x, context=context)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
|
||||
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
|
||||
x = self.proj_out(x)
|
||||
return x + x_in
|
3
main.py
3
main.py
|
@ -759,6 +759,9 @@ if __name__ == "__main__":
|
|||
del callbacks_cfg['ignore_keys_callback']
|
||||
|
||||
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
|
||||
if not lightning_config.get("find_unused_parameters", True):
|
||||
from pytorch_lightning.plugins import DDPPlugin
|
||||
trainer_kwargs["plugins"] = DDPPlugin(find_unused_parameters=False)
|
||||
|
||||
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
|
||||
trainer.logdir = logdir ###
|
||||
|
|
Loading…
Reference in a new issue