Merge branch 'main' of github.com:pesser/stable-diffusion into main
This commit is contained in:
commit
407fcf490d
6 changed files with 104 additions and 3 deletions
|
@ -106,6 +106,12 @@ data:
|
|||
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 5000
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
|
@ -124,7 +130,6 @@ lightning:
|
|||
unconditional_guidance_label: [""]
|
||||
|
||||
trainer:
|
||||
#replace_sampler_ddp: False
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
|
|
|
@ -148,7 +148,18 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
|||
|
||||
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
||||
|
||||
if self.tar_base == "__improvedaesthetic__":
|
||||
print("## Warning, loading the same improved aesthetic dataset "
|
||||
"for all splits and ignoring shards parameter.")
|
||||
urls = []
|
||||
for i in range(1, 65):
|
||||
for j in range(512):
|
||||
for k in range(5):
|
||||
urls.append(f's3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics/{i:02d}/{j:03d}/{k:05d}.tar')
|
||||
tars = [f'pipe:aws s3 cp {url} -' for url in urls]
|
||||
else:
|
||||
tars = os.path.join(self.tar_base, dataset_config.shards)
|
||||
|
||||
dset = wds.WebDataset(
|
||||
tars,
|
||||
nodesplitter=nodesplitter,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
albumentations==0.4.3
|
||||
opencv-python==4.1.2.30
|
||||
opencv-python
|
||||
pudb==2019.2
|
||||
imageio==2.9.0
|
||||
imageio-ffmpeg==0.4.2
|
||||
|
|
26
scripts/slurm/README.md
Normal file
26
scripts/slurm/README.md
Normal file
|
@ -0,0 +1,26 @@
|
|||
# Example
|
||||
|
||||
Resume f8 @ 512 on Laion-HR
|
||||
|
||||
```
|
||||
sbatch scripts/slurm/resume_512/sbatch.sh
|
||||
```
|
||||
|
||||
# Reuse
|
||||
|
||||
To reuse this as a template, copy `sbatch.sh` and `launcher.sh` somewhere. In
|
||||
`sbatch.sh`, adjust the lines
|
||||
|
||||
```
|
||||
#SBATCH --job-name=stable-diffusion-512cont
|
||||
#SBATCH --nodes=24
|
||||
```
|
||||
|
||||
and the path to your `launcher.sh` in the last line,
|
||||
|
||||
```
|
||||
srun bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh
|
||||
```
|
||||
|
||||
In `launcher.sh`, adjust `CONFIG` and `EXTRA`. Maybe give it a test run with
|
||||
debug flags uncommented and a reduced number of nodes.
|
20
scripts/slurm/resume_512/launcher.sh
Normal file
20
scripts/slurm/resume_512/launcher.sh
Normal file
|
@ -0,0 +1,20 @@
|
|||
#!/bin/bash
|
||||
export NODE_RANK=${SLURM_NODEID}
|
||||
echo "##########################################"
|
||||
echo MASTER_ADDR=${MASTER_ADDR}
|
||||
echo MASTER_PORT=${MASTER_PORT}
|
||||
echo NODE_RANK=${NODE_RANK}
|
||||
echo WORLD_SIZE=${WORLD_SIZE}
|
||||
echo "##########################################"
|
||||
# debug environment worked great so we stick with it
|
||||
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||
# env with pip dependencies from stable diffusion's requirements.txt
|
||||
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||
conda activate stable
|
||||
cd /fsx/stable-diffusion/stable-diffusion
|
||||
|
||||
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
|
||||
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/256f8ft512-2022-06-15-pruned.ckpt"
|
||||
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
||||
|
||||
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
39
scripts/slurm/resume_512/sbatch.sh
Normal file
39
scripts/slurm/resume_512/sbatch.sh
Normal file
|
@ -0,0 +1,39 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --partition=compute-od-gpu
|
||||
#SBATCH --job-name=stable-diffusion-512cont
|
||||
#SBATCH --nodes=24
|
||||
#SBATCH --gpus-per-node=8
|
||||
#SBATCH --cpus-per-gpu=4
|
||||
#SBATCH --ntasks-per-node=1
|
||||
#SBATCH --output=%x_%j.%n.out
|
||||
|
||||
# nccl / efa stuff
|
||||
module load intelmpi
|
||||
source /opt/intel/mpi/latest/env/vars.sh
|
||||
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||
export NCCL_PROTO=simple
|
||||
export PATH=/opt/amazon/efa/bin:$PATH
|
||||
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||
export FI_EFA_FORK_SAFE=1
|
||||
export FI_LOG_LEVEL=1
|
||||
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||
export NCCL_DEBUG=info
|
||||
export PYTHONFAULTHANDLER=1
|
||||
export CUDA_LAUNCH_BLOCKING=0
|
||||
export OMPI_MCA_mtl_base_verbose=1
|
||||
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||
export FI_PROVIDER=efa
|
||||
export FI_EFA_TX_MIN_CREDITS=64
|
||||
export NCCL_TREE_THRESHOLD=0
|
||||
|
||||
# pytorch multinode vars
|
||||
# node rank should be set in launcher script
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=11338
|
||||
export WORLD_SIZE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
||||
|
||||
echo MASTER_ADDR=${MASTER_ADDR}
|
||||
echo MASTER_PORT=${MASTER_PORT}
|
||||
echo WORLD_SIZE=${WORLD_SIZE}
|
||||
|
||||
srun --output=%x_%j.%n.out bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512/launcher.sh
|
Loading…
Reference in a new issue