debug with dummy data
This commit is contained in:
parent
e7e1c6343a
commit
3e2e9d8e9e
2 changed files with 126 additions and 0 deletions
108
configs/stable-diffusion/dev_mn_dummy.yaml
Normal file
108
configs/stable-diffusion/dev_mn_dummy.yaml
Normal file
|
@ -0,0 +1,108 @@
|
||||||
|
model:
|
||||||
|
base_learning_rate: 1.0e-04
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 32
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: true
|
||||||
|
conditioning_key: crossattn
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 10000 ]
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32
|
||||||
|
in_channels: 4
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 32 # 320 # TODO increase
|
||||||
|
attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, ]
|
||||||
|
#num_head_channels: 32
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 32
|
||||||
|
use_checkpoint: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.BERTEmbedder
|
||||||
|
params:
|
||||||
|
n_embed: 32
|
||||||
|
n_layer: 1 #32 # TODO: increase
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: main.DataModuleFromConfig
|
||||||
|
params:
|
||||||
|
batch_size: 4
|
||||||
|
num_workers: 4
|
||||||
|
wrap: false
|
||||||
|
train:
|
||||||
|
target: ldm.data.dummy.DummyData
|
||||||
|
params:
|
||||||
|
length: 10000
|
||||||
|
size: [256, 256, 3]
|
||||||
|
validation:
|
||||||
|
target: ldm.data.dummy.DummyData
|
||||||
|
params:
|
||||||
|
length: 10000
|
||||||
|
size: [256, 256, 3]
|
||||||
|
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
batch_frequency: 5000 # 5000
|
||||||
|
max_images: 0
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: True
|
||||||
|
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
#replace_sampler_ddp: False
|
||||||
|
benchmark: True
|
||||||
|
num_sanity_val_steps: 0
|
18
ldm/data/dummy.py
Normal file
18
ldm/data/dummy.py
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
import numpy as np
|
||||||
|
import random
|
||||||
|
import string
|
||||||
|
from torch.utils.data import Dataset, Subset
|
||||||
|
|
||||||
|
class DummyData(Dataset):
|
||||||
|
def __init__(self, length, size):
|
||||||
|
self.length = length
|
||||||
|
self.size = size
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return self.length
|
||||||
|
|
||||||
|
def __getitem__(self, i):
|
||||||
|
x = np.random.randn(*self.size)
|
||||||
|
letters = string.ascii_lowercase
|
||||||
|
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
||||||
|
return {"jpg": x, "txt": y}
|
Loading…
Reference in a new issue