diff --git a/scripts/txt2img.py b/scripts/txt2img.py index 6e98f83..37797ac 100644 --- a/scripts/txt2img.py +++ b/scripts/txt2img.py @@ -83,6 +83,11 @@ def main(): action='store_true', help="use plms sampling", ) + parser.add_argument( + "--fixed_code", + action='store_true', + help="if enabled, uses the same starting code across all samples ", + ) parser.add_argument( "--ddim_eta", @@ -155,7 +160,6 @@ def main(): type=str, help="if specified, load prompts from this file", ) - parser.add_argument( "--config", type=str, @@ -209,6 +213,10 @@ def main(): base_count = len(os.listdir(sample_path)) grid_count = len(os.listdir(outpath)) - 1 + start_code = None + if opt.fixed_code: + start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device) + with torch.no_grad(): with model.ema_scope(): tic = time.time() @@ -221,7 +229,7 @@ def main(): if isinstance(prompts, tuple): prompts = list(prompts) c = model.get_learned_conditioning(prompts) - shape = [opt.C, opt.H//opt.f, opt.W//opt.f] + shape = [opt.C, opt.H // opt.f, opt.W // opt.f] samples_ddim, _ = sampler.sample(S=opt.ddim_steps, conditioning=c, batch_size=opt.n_samples, @@ -230,15 +238,17 @@ def main(): unconditional_guidance_scale=opt.scale, unconditional_conditioning=uc, eta=opt.ddim_eta, - dynamic_threshold=opt.dyn) + dynamic_threshold=opt.dyn, + x_T=start_code) x_samples_ddim = model.decode_first_stage(samples_ddim) - x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0) + x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) if not opt.skip_save: for x_sample in x_samples_ddim: x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c') - Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png")) + Image.fromarray(x_sample.astype(np.uint8)).save( + os.path.join(sample_path, f"{base_count:05}.png")) base_count += 1 all_samples.append(x_samples_ddim) @@ -256,7 +266,7 @@ def main(): toc = time.time() print(f"Your samples are ready and waiting for you here: \n{outpath} \n" - f"Sampling took {toc-tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec." + f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec." f" \nEnjoy.")