eval script
This commit is contained in:
parent
cec5968820
commit
36b5177221
1 changed files with 79 additions and 35 deletions
|
@ -4,6 +4,7 @@ import numpy as np
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from PIL import Image
|
from PIL import Image
|
||||||
from tqdm import tqdm, trange
|
from tqdm import tqdm, trange
|
||||||
|
from itertools import islice
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
from torchvision.utils import make_grid
|
from torchvision.utils import make_grid
|
||||||
|
|
||||||
|
@ -12,6 +13,11 @@ from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
from ldm.models.diffusion.plms import PLMSSampler
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
|
||||||
|
|
||||||
|
def chunk(it, size):
|
||||||
|
it = iter(it)
|
||||||
|
return iter(lambda: tuple(islice(it, size)), ())
|
||||||
|
|
||||||
|
|
||||||
def load_model_from_config(config, ckpt, verbose=False):
|
def load_model_from_config(config, ckpt, verbose=False):
|
||||||
print(f"Loading model from {ckpt}")
|
print(f"Loading model from {ckpt}")
|
||||||
pl_sd = torch.load(ckpt, map_location="cpu")
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||||
|
@ -51,7 +57,7 @@ if __name__ == "__main__":
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--ddim_steps",
|
"--ddim_steps",
|
||||||
type=int,
|
type=int,
|
||||||
default=200,
|
default=50,
|
||||||
help="number of ddim sampling steps",
|
help="number of ddim sampling steps",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@ -91,8 +97,8 @@ if __name__ == "__main__":
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--n_samples",
|
"--n_samples",
|
||||||
type=int,
|
type=int,
|
||||||
default=4,
|
default=8,
|
||||||
help="how many samples to produce for the given prompt",
|
help="how many samples to produce for each given prompt. A.k.a batch size",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
|
@ -101,11 +107,35 @@ if __name__ == "__main__":
|
||||||
default=5.0,
|
default=5.0,
|
||||||
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--dyn",
|
||||||
|
type=float,
|
||||||
|
help="dynamic thresholding from Imagen, in latent space (TODO: try in pixel space with intermediate decode)",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--from-file",
|
||||||
|
type=str,
|
||||||
|
help="if specified, load prompts from this file",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--config",
|
||||||
|
type=str,
|
||||||
|
default="logs/f8-kl-clip-encoder-256x256-run1/configs/2022-06-01T22-11-40-project.yaml",
|
||||||
|
help="path to config which constructs model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ckpt",
|
||||||
|
type=str,
|
||||||
|
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
|
||||||
|
help="path to checkpoint of model",
|
||||||
|
)
|
||||||
opt = parser.parse_args()
|
opt = parser.parse_args()
|
||||||
|
|
||||||
|
|
||||||
config = OmegaConf.load("configs/latent-diffusion/txt2img-1p4B-eval.yaml") # TODO: Optionally download from same location as ckpt and chnage this logic
|
config = OmegaConf.load(f"{opt.config}")
|
||||||
model = load_model_from_config(config, "models/ldm/text2img-large/model.ckpt") # TODO: check path
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||||
|
|
||||||
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
model = model.to(device)
|
model = model.to(device)
|
||||||
|
@ -118,48 +148,62 @@ if __name__ == "__main__":
|
||||||
os.makedirs(opt.outdir, exist_ok=True)
|
os.makedirs(opt.outdir, exist_ok=True)
|
||||||
outpath = opt.outdir
|
outpath = opt.outdir
|
||||||
|
|
||||||
prompt = opt.prompt
|
batch_size = opt.n_samples
|
||||||
|
if not opt.from_file:
|
||||||
|
prompt = opt.prompt
|
||||||
|
assert prompt is not None
|
||||||
|
data = [batch_size * [prompt]]
|
||||||
|
|
||||||
|
else:
|
||||||
|
print(f"reading prompts from {opt.from_file}")
|
||||||
|
with open(opt.from_file, "r") as f:
|
||||||
|
data = f.read().splitlines()
|
||||||
|
data = list(chunk(data, batch_size))
|
||||||
|
|
||||||
sample_path = os.path.join(outpath, "samples")
|
sample_path = os.path.join(outpath, "samples")
|
||||||
os.makedirs(sample_path, exist_ok=True)
|
os.makedirs(sample_path, exist_ok=True)
|
||||||
base_count = len(os.listdir(sample_path))
|
base_count = len(os.listdir(sample_path))
|
||||||
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
|
|
||||||
all_samples=list()
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
with model.ema_scope():
|
with model.ema_scope():
|
||||||
uc = None
|
|
||||||
if opt.scale != 1.0:
|
|
||||||
uc = model.get_learned_conditioning(opt.n_samples * [""])
|
|
||||||
for n in trange(opt.n_iter, desc="Sampling"):
|
for n in trange(opt.n_iter, desc="Sampling"):
|
||||||
c = model.get_learned_conditioning(opt.n_samples * [prompt])
|
all_samples = list()
|
||||||
shape = [4, opt.H//8, opt.W//8]
|
for prompts in tqdm(data, desc="data"):
|
||||||
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
uc = None
|
||||||
conditioning=c,
|
if opt.scale != 1.0:
|
||||||
batch_size=opt.n_samples,
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||||||
shape=shape,
|
c = model.get_learned_conditioning(prompts)
|
||||||
verbose=False,
|
shape = [4, opt.H//8, opt.W//8]
|
||||||
unconditional_guidance_scale=opt.scale,
|
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
|
||||||
unconditional_conditioning=uc,
|
conditioning=c,
|
||||||
eta=opt.ddim_eta)
|
batch_size=opt.n_samples,
|
||||||
|
shape=shape,
|
||||||
|
verbose=False,
|
||||||
|
unconditional_guidance_scale=opt.scale,
|
||||||
|
unconditional_conditioning=uc,
|
||||||
|
eta=opt.ddim_eta,
|
||||||
|
dynamic_threshold=opt.dyn)
|
||||||
|
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim+1.0)/2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
for x_sample in x_samples_ddim:
|
for x_sample in x_samples_ddim:
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:04}.png"))
|
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png"))
|
||||||
base_count += 1
|
base_count += 1
|
||||||
all_samples.append(x_samples_ddim)
|
all_samples.append(x_samples_ddim)
|
||||||
|
|
||||||
|
|
||||||
# additionally, save as grid
|
# additionally, save as grid
|
||||||
grid = torch.stack(all_samples, 0)
|
grid = torch.stack(all_samples, 0)
|
||||||
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||||
grid = make_grid(grid, nrow=opt.n_samples)
|
grid = make_grid(grid, nrow=opt.n_samples)
|
||||||
|
|
||||||
# to image
|
# to image
|
||||||
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||||
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'{prompt.replace(" ", "-")}.png'))
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
|
grid_count += 1
|
||||||
|
|
||||||
print(f"Your samples are ready and waiting four you here: \n{outpath} \nEnjoy.")
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \nEnjoy.")
|
||||||
|
|
Loading…
Reference in a new issue