support image inputs
This commit is contained in:
parent
f57974eff0
commit
305838d82a
2 changed files with 380 additions and 1 deletions
|
@ -6,7 +6,7 @@ from tqdm import tqdm
|
||||||
from functools import partial
|
from functools import partial
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
|
|
||||||
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
|
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like, extract_into_tensor
|
||||||
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
|
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
|
||||||
|
|
||||||
|
|
||||||
|
@ -226,3 +226,86 @@ class DDIMSampler(object):
|
||||||
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
||||||
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
||||||
return x_prev, pred_x0
|
return x_prev, pred_x0
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def encode(self, x0, c, t_enc, use_original_steps=False, return_intermediates=None,
|
||||||
|
unconditional_guidance_scale=1.0, unconditional_conditioning=None):
|
||||||
|
num_reference_steps = self.ddpm_num_timesteps if use_original_steps else self.ddim_timesteps.shape[0]
|
||||||
|
|
||||||
|
assert t_enc <= num_reference_steps
|
||||||
|
num_steps = t_enc
|
||||||
|
|
||||||
|
if use_original_steps:
|
||||||
|
alphas_next = self.alphas_cumprod[:num_steps]
|
||||||
|
alphas = self.alphas_cumprod_prev[:num_steps]
|
||||||
|
else:
|
||||||
|
alphas_next = self.ddim_alphas[:num_steps]
|
||||||
|
alphas = torch.tensor(self.ddim_alphas_prev[:num_steps])
|
||||||
|
|
||||||
|
x_next = x0
|
||||||
|
intermediates = []
|
||||||
|
inter_steps = []
|
||||||
|
for i in tqdm(range(num_steps), desc='Encoding Image'):
|
||||||
|
t = torch.full((x0.shape[0],), i, device=self.model.device, dtype=torch.long)
|
||||||
|
if unconditional_guidance_scale == 1.:
|
||||||
|
noise_pred = self.model.apply_model(x_next, t, c)
|
||||||
|
else:
|
||||||
|
assert unconditional_conditioning is not None
|
||||||
|
e_t_uncond, noise_pred = torch.chunk(
|
||||||
|
self.model.apply_model(torch.cat((x_next, x_next)), torch.cat((t, t)),
|
||||||
|
torch.cat((unconditional_conditioning, c))), 2)
|
||||||
|
noise_pred = e_t_uncond + unconditional_guidance_scale * (noise_pred - e_t_uncond)
|
||||||
|
|
||||||
|
xt_weighted = (alphas_next[i] / alphas[i]).sqrt() * x_next
|
||||||
|
weighted_noise_pred = alphas_next[i].sqrt() * (
|
||||||
|
(1 / alphas_next[i] - 1).sqrt() - (1 / alphas[i] - 1).sqrt()) * noise_pred
|
||||||
|
x_next = xt_weighted + weighted_noise_pred
|
||||||
|
if return_intermediates and i % (
|
||||||
|
num_steps // return_intermediates) == 0 and i < num_steps - 1:
|
||||||
|
intermediates.append(x_next)
|
||||||
|
inter_steps.append(i)
|
||||||
|
elif return_intermediates and i >= num_steps - 2:
|
||||||
|
intermediates.append(x_next)
|
||||||
|
inter_steps.append(i)
|
||||||
|
|
||||||
|
out = {'x_encoded': x_next, 'intermediate_steps': inter_steps}
|
||||||
|
if return_intermediates:
|
||||||
|
out.update({'intermediates': intermediates})
|
||||||
|
return x_next, out
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def stochastic_encode(self, x0, t, use_original_steps=False, noise=None):
|
||||||
|
# fast, but does not allow for exact reconstruction
|
||||||
|
# t serves as an index to gather the correct alphas
|
||||||
|
if use_original_steps:
|
||||||
|
sqrt_alphas_cumprod = self.sqrt_alphas_cumprod
|
||||||
|
sqrt_one_minus_alphas_cumprod = self.sqrt_one_minus_alphas_cumprod
|
||||||
|
else:
|
||||||
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
||||||
|
sqrt_one_minus_alphas_cumprod = self.ddim_sqrt_one_minus_alphas
|
||||||
|
|
||||||
|
if noise is None:
|
||||||
|
noise = torch.randn_like(x0)
|
||||||
|
return (extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0 +
|
||||||
|
extract_into_tensor(sqrt_one_minus_alphas_cumprod, t, x0.shape) * noise)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def decode(self, x_latent, cond, t_start, unconditional_guidance_scale=1.0, unconditional_conditioning=None,
|
||||||
|
use_original_steps=False):
|
||||||
|
|
||||||
|
timesteps = np.arange(self.ddpm_num_timesteps) if use_original_steps else self.ddim_timesteps
|
||||||
|
timesteps = timesteps[:t_start]
|
||||||
|
|
||||||
|
time_range = np.flip(timesteps)
|
||||||
|
total_steps = timesteps.shape[0]
|
||||||
|
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
||||||
|
|
||||||
|
iterator = tqdm(time_range, desc='Decoding image', total=total_steps)
|
||||||
|
x_dec = x_latent
|
||||||
|
for i, step in enumerate(iterator):
|
||||||
|
index = total_steps - i - 1
|
||||||
|
ts = torch.full((x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long)
|
||||||
|
x_dec, _ = self.p_sample_ddim(x_dec, cond, ts, index=index, use_original_steps=use_original_steps,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=unconditional_conditioning)
|
||||||
|
return x_dec
|
296
scripts/img2img.py
Normal file
296
scripts/img2img.py
Normal file
|
@ -0,0 +1,296 @@
|
||||||
|
"""make variations of input image"""
|
||||||
|
|
||||||
|
import argparse, os, sys, glob
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from omegaconf import OmegaConf
|
||||||
|
from PIL import Image
|
||||||
|
from tqdm import tqdm, trange
|
||||||
|
from itertools import islice
|
||||||
|
from einops import rearrange, repeat
|
||||||
|
from torchvision.utils import make_grid
|
||||||
|
import time
|
||||||
|
from pytorch_lightning import seed_everything
|
||||||
|
|
||||||
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.models.diffusion.ddim import DDIMSampler
|
||||||
|
from ldm.models.diffusion.plms import PLMSSampler
|
||||||
|
|
||||||
|
|
||||||
|
def chunk(it, size):
|
||||||
|
it = iter(it)
|
||||||
|
return iter(lambda: tuple(islice(it, size)), ())
|
||||||
|
|
||||||
|
|
||||||
|
def load_model_from_config(config, ckpt, verbose=False):
|
||||||
|
print(f"Loading model from {ckpt}")
|
||||||
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
||||||
|
if "global_step" in pl_sd:
|
||||||
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
sd = pl_sd["state_dict"]
|
||||||
|
model = instantiate_from_config(config.model)
|
||||||
|
m, u = model.load_state_dict(sd, strict=False)
|
||||||
|
if len(m) > 0 and verbose:
|
||||||
|
print("missing keys:")
|
||||||
|
print(m)
|
||||||
|
if len(u) > 0 and verbose:
|
||||||
|
print("unexpected keys:")
|
||||||
|
print(u)
|
||||||
|
|
||||||
|
model.cuda()
|
||||||
|
model.eval()
|
||||||
|
return model
|
||||||
|
|
||||||
|
|
||||||
|
def load_img(path):
|
||||||
|
image = np.array(Image.open(path).convert("RGB"))
|
||||||
|
image = image.astype(np.float32) / 255.0
|
||||||
|
image = image[None].transpose(0, 3, 1, 2)
|
||||||
|
image = torch.from_numpy(image)
|
||||||
|
return 2.*image - 1.
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--prompt",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
default="a painting of a virus monster playing guitar",
|
||||||
|
help="the prompt to render"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--init-img",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
help="path to the input image"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--outdir",
|
||||||
|
type=str,
|
||||||
|
nargs="?",
|
||||||
|
help="dir to write results to",
|
||||||
|
default="outputs/img2img-samples"
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip_grid",
|
||||||
|
action='store_true',
|
||||||
|
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--skip_save",
|
||||||
|
action='store_true',
|
||||||
|
help="do not save indiviual samples. For speed measurements.",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ddim_steps",
|
||||||
|
type=int,
|
||||||
|
default=50,
|
||||||
|
help="number of ddim sampling steps",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--plms",
|
||||||
|
action='store_true',
|
||||||
|
help="use plms sampling",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fixed_code",
|
||||||
|
action='store_true',
|
||||||
|
help="if enabled, uses the same starting code across all samples ",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--ddim_eta",
|
||||||
|
type=float,
|
||||||
|
default=0.0,
|
||||||
|
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_iter",
|
||||||
|
type=int,
|
||||||
|
default=1,
|
||||||
|
help="sample this often",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--H",
|
||||||
|
type=int,
|
||||||
|
default=256,
|
||||||
|
help="image height, in pixel space",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--W",
|
||||||
|
type=int,
|
||||||
|
default=256,
|
||||||
|
help="image width, in pixel space",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--C",
|
||||||
|
type=int,
|
||||||
|
default=4,
|
||||||
|
help="latent channels",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--f",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="downsampling factor, most often 8 or 16",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_samples",
|
||||||
|
type=int,
|
||||||
|
default=8,
|
||||||
|
help="how many samples to produce for each given prompt. A.k.a batch size",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--n_rows",
|
||||||
|
type=int,
|
||||||
|
default=0,
|
||||||
|
help="rows in the grid (default: n_samples)",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--scale",
|
||||||
|
type=float,
|
||||||
|
default=5.0,
|
||||||
|
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--strength",
|
||||||
|
type=float,
|
||||||
|
default=0.3,
|
||||||
|
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
|
||||||
|
)
|
||||||
|
|
||||||
|
parser.add_argument(
|
||||||
|
"--from-file",
|
||||||
|
type=str,
|
||||||
|
help="if specified, load prompts from this file",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--config",
|
||||||
|
type=str,
|
||||||
|
default="logs/f8-kl-clip-encoder-256x256-run1/configs/2022-06-01T22-11-40-project.yaml",
|
||||||
|
help="path to config which constructs model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--ckpt",
|
||||||
|
type=str,
|
||||||
|
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
|
||||||
|
help="path to checkpoint of model",
|
||||||
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--seed",
|
||||||
|
type=int,
|
||||||
|
default=42,
|
||||||
|
help="the seed (for reproducible sampling)",
|
||||||
|
)
|
||||||
|
opt = parser.parse_args()
|
||||||
|
seed_everything(opt.seed)
|
||||||
|
|
||||||
|
config = OmegaConf.load(f"{opt.config}")
|
||||||
|
model = load_model_from_config(config, f"{opt.ckpt}")
|
||||||
|
|
||||||
|
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
||||||
|
model = model.to(device)
|
||||||
|
|
||||||
|
if opt.plms:
|
||||||
|
raise NotImplementedError("check for plms")
|
||||||
|
sampler = PLMSSampler(model)
|
||||||
|
else:
|
||||||
|
sampler = DDIMSampler(model)
|
||||||
|
|
||||||
|
os.makedirs(opt.outdir, exist_ok=True)
|
||||||
|
outpath = opt.outdir
|
||||||
|
|
||||||
|
batch_size = opt.n_samples
|
||||||
|
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
|
||||||
|
if not opt.from_file:
|
||||||
|
prompt = opt.prompt
|
||||||
|
assert prompt is not None
|
||||||
|
data = [batch_size * [prompt]]
|
||||||
|
|
||||||
|
else:
|
||||||
|
print(f"reading prompts from {opt.from_file}")
|
||||||
|
with open(opt.from_file, "r") as f:
|
||||||
|
data = f.read().splitlines()
|
||||||
|
data = list(chunk(data, batch_size))
|
||||||
|
|
||||||
|
sample_path = os.path.join(outpath, "samples")
|
||||||
|
os.makedirs(sample_path, exist_ok=True)
|
||||||
|
base_count = len(os.listdir(sample_path))
|
||||||
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
|
assert os.path.isfile(opt.init_img)
|
||||||
|
init_image = load_img(opt.init_img).to(device)
|
||||||
|
init_image = repeat(init_image, '1 ... -> b ...', b=batch_size)
|
||||||
|
init_latent = model.get_first_stage_encoding(model.encode_first_stage(init_image)) # move to latent space
|
||||||
|
|
||||||
|
sampler.make_schedule(ddim_num_steps=opt.ddim_steps, ddim_eta=opt.ddim_eta, verbose=False)
|
||||||
|
|
||||||
|
assert 0. <= opt.strength <= 1., 'can only work with strength in [0.0, 1.0]'
|
||||||
|
t_enc = int(opt.strength * opt.ddim_steps)
|
||||||
|
print(f"target t_enc is {t_enc} steps")
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
with model.ema_scope():
|
||||||
|
tic = time.time()
|
||||||
|
all_samples = list()
|
||||||
|
for n in trange(opt.n_iter, desc="Sampling"):
|
||||||
|
for prompts in tqdm(data, desc="data"):
|
||||||
|
uc = None
|
||||||
|
if opt.scale != 1.0:
|
||||||
|
uc = model.get_learned_conditioning(batch_size * [""])
|
||||||
|
if isinstance(prompts, tuple):
|
||||||
|
prompts = list(prompts)
|
||||||
|
c = model.get_learned_conditioning(prompts)
|
||||||
|
|
||||||
|
# encode (scaled latent)
|
||||||
|
z_enc = sampler.stochastic_encode(init_latent, torch.tensor([t_enc]*batch_size).to(device))
|
||||||
|
# decode it
|
||||||
|
samples = sampler.decode(z_enc, c, t_enc, unconditional_guidance_scale=opt.scale,
|
||||||
|
unconditional_conditioning=uc,)
|
||||||
|
|
||||||
|
x_samples = model.decode_first_stage(samples)
|
||||||
|
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
|
||||||
|
if not opt.skip_save:
|
||||||
|
for x_sample in x_samples:
|
||||||
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
||||||
|
os.path.join(sample_path, f"{base_count:05}.png"))
|
||||||
|
base_count += 1
|
||||||
|
all_samples.append(x_samples)
|
||||||
|
|
||||||
|
if not opt.skip_grid:
|
||||||
|
# additionally, save as grid
|
||||||
|
grid = torch.stack(all_samples, 0)
|
||||||
|
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
|
||||||
|
grid = make_grid(grid, nrow=n_rows)
|
||||||
|
|
||||||
|
# to image
|
||||||
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
||||||
|
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
|
||||||
|
grid_count += 1
|
||||||
|
|
||||||
|
toc = time.time()
|
||||||
|
|
||||||
|
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||||
|
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
||||||
|
f" \nEnjoy.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in a new issue