Merge remote-tracking branch 'origin/main'
This commit is contained in:
commit
2c744c9e85
2 changed files with 128 additions and 7 deletions
111
ldm/util.py
111
ldm/util.py
|
@ -1,6 +1,7 @@
|
||||||
import importlib
|
import importlib
|
||||||
|
|
||||||
import torch
|
import torch
|
||||||
|
from torch import optim
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
from inspect import isfunction
|
from inspect import isfunction
|
||||||
|
@ -84,3 +85,113 @@ def get_obj_from_str(string, reload=False):
|
||||||
module_imp = importlib.import_module(module)
|
module_imp = importlib.import_module(module)
|
||||||
importlib.reload(module_imp)
|
importlib.reload(module_imp)
|
||||||
return getattr(importlib.import_module(module, package=None), cls)
|
return getattr(importlib.import_module(module, package=None), cls)
|
||||||
|
|
||||||
|
|
||||||
|
class AdamWwithEMAandWings(optim.Optimizer):
|
||||||
|
# credit to https://gist.github.com/crowsonkb/65f7265353f403714fce3b2595e0b298
|
||||||
|
def __init__(self, params, lr=1.e-3, betas=(0.9, 0.999), eps=1.e-8, # TODO: check hyperparameters before using
|
||||||
|
weight_decay=1.e-2, amsgrad=False, ema_decay=0.9999, # ema decay to match previous code
|
||||||
|
ema_power=1., param_names=()):
|
||||||
|
"""AdamW that saves EMA versions of the parameters."""
|
||||||
|
if not 0.0 <= lr:
|
||||||
|
raise ValueError("Invalid learning rate: {}".format(lr))
|
||||||
|
if not 0.0 <= eps:
|
||||||
|
raise ValueError("Invalid epsilon value: {}".format(eps))
|
||||||
|
if not 0.0 <= betas[0] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
|
||||||
|
if not 0.0 <= betas[1] < 1.0:
|
||||||
|
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
|
||||||
|
if not 0.0 <= weight_decay:
|
||||||
|
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
|
||||||
|
if not 0.0 <= ema_decay <= 1.0:
|
||||||
|
raise ValueError("Invalid ema_decay value: {}".format(ema_decay))
|
||||||
|
defaults = dict(lr=lr, betas=betas, eps=eps,
|
||||||
|
weight_decay=weight_decay, amsgrad=amsgrad, ema_decay=ema_decay,
|
||||||
|
ema_power=ema_power, param_names=param_names)
|
||||||
|
super().__init__(params, defaults)
|
||||||
|
|
||||||
|
def __setstate__(self, state):
|
||||||
|
super().__setstate__(state)
|
||||||
|
for group in self.param_groups:
|
||||||
|
group.setdefault('amsgrad', False)
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def step(self, closure=None):
|
||||||
|
"""Performs a single optimization step.
|
||||||
|
Args:
|
||||||
|
closure (callable, optional): A closure that reevaluates the model
|
||||||
|
and returns the loss.
|
||||||
|
"""
|
||||||
|
loss = None
|
||||||
|
if closure is not None:
|
||||||
|
with torch.enable_grad():
|
||||||
|
loss = closure()
|
||||||
|
|
||||||
|
for group in self.param_groups:
|
||||||
|
params_with_grad = []
|
||||||
|
grads = []
|
||||||
|
exp_avgs = []
|
||||||
|
exp_avg_sqs = []
|
||||||
|
ema_params_with_grad = []
|
||||||
|
state_sums = []
|
||||||
|
max_exp_avg_sqs = []
|
||||||
|
state_steps = []
|
||||||
|
amsgrad = group['amsgrad']
|
||||||
|
beta1, beta2 = group['betas']
|
||||||
|
ema_decay = group['ema_decay']
|
||||||
|
ema_power = group['ema_power']
|
||||||
|
|
||||||
|
for p in group['params']:
|
||||||
|
if p.grad is None:
|
||||||
|
continue
|
||||||
|
params_with_grad.append(p)
|
||||||
|
if p.grad.is_sparse:
|
||||||
|
raise RuntimeError('AdamW does not support sparse gradients')
|
||||||
|
grads.append(p.grad)
|
||||||
|
|
||||||
|
state = self.state[p]
|
||||||
|
|
||||||
|
# State initialization
|
||||||
|
if len(state) == 0:
|
||||||
|
state['step'] = 0
|
||||||
|
# Exponential moving average of gradient values
|
||||||
|
state['exp_avg'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||||
|
# Exponential moving average of squared gradient values
|
||||||
|
state['exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||||
|
if amsgrad:
|
||||||
|
# Maintains max of all exp. moving avg. of sq. grad. values
|
||||||
|
state['max_exp_avg_sq'] = torch.zeros_like(p, memory_format=torch.preserve_format)
|
||||||
|
# Exponential moving average of parameter values
|
||||||
|
state['param_exp_avg'] = p.detach().float().clone()
|
||||||
|
|
||||||
|
exp_avgs.append(state['exp_avg'])
|
||||||
|
exp_avg_sqs.append(state['exp_avg_sq'])
|
||||||
|
ema_params_with_grad.append(state['param_exp_avg'])
|
||||||
|
|
||||||
|
if amsgrad:
|
||||||
|
max_exp_avg_sqs.append(state['max_exp_avg_sq'])
|
||||||
|
|
||||||
|
# update the steps for each param group update
|
||||||
|
state['step'] += 1
|
||||||
|
# record the step after step update
|
||||||
|
state_steps.append(state['step'])
|
||||||
|
|
||||||
|
optim._functional.adamw(params_with_grad,
|
||||||
|
grads,
|
||||||
|
exp_avgs,
|
||||||
|
exp_avg_sqs,
|
||||||
|
max_exp_avg_sqs,
|
||||||
|
state_steps,
|
||||||
|
amsgrad=amsgrad,
|
||||||
|
beta1=beta1,
|
||||||
|
beta2=beta2,
|
||||||
|
lr=group['lr'],
|
||||||
|
weight_decay=group['weight_decay'],
|
||||||
|
eps=group['eps'],
|
||||||
|
maximize=False)
|
||||||
|
|
||||||
|
cur_ema_decay = min(ema_decay, 1 - state['step'] ** -ema_power)
|
||||||
|
for param, ema_param in zip(params_with_grad, ema_params_with_grad):
|
||||||
|
ema_param.mul_(cur_ema_decay).add_(param.float(), alpha=1 - cur_ema_decay)
|
||||||
|
|
||||||
|
return loss
|
|
@ -83,6 +83,11 @@ def main():
|
||||||
action='store_true',
|
action='store_true',
|
||||||
help="use plms sampling",
|
help="use plms sampling",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--fixed_code",
|
||||||
|
action='store_true',
|
||||||
|
help="if enabled, uses the same starting code across all samples ",
|
||||||
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--ddim_eta",
|
"--ddim_eta",
|
||||||
|
@ -155,7 +160,6 @@ def main():
|
||||||
type=str,
|
type=str,
|
||||||
help="if specified, load prompts from this file",
|
help="if specified, load prompts from this file",
|
||||||
)
|
)
|
||||||
|
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--config",
|
"--config",
|
||||||
type=str,
|
type=str,
|
||||||
|
@ -209,6 +213,10 @@ def main():
|
||||||
base_count = len(os.listdir(sample_path))
|
base_count = len(os.listdir(sample_path))
|
||||||
grid_count = len(os.listdir(outpath)) - 1
|
grid_count = len(os.listdir(outpath)) - 1
|
||||||
|
|
||||||
|
start_code = None
|
||||||
|
if opt.fixed_code:
|
||||||
|
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
|
||||||
|
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
with model.ema_scope():
|
with model.ema_scope():
|
||||||
tic = time.time()
|
tic = time.time()
|
||||||
|
@ -230,7 +238,8 @@ def main():
|
||||||
unconditional_guidance_scale=opt.scale,
|
unconditional_guidance_scale=opt.scale,
|
||||||
unconditional_conditioning=uc,
|
unconditional_conditioning=uc,
|
||||||
eta=opt.ddim_eta,
|
eta=opt.ddim_eta,
|
||||||
dynamic_threshold=opt.dyn)
|
dynamic_threshold=opt.dyn,
|
||||||
|
x_T=start_code)
|
||||||
|
|
||||||
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
x_samples_ddim = model.decode_first_stage(samples_ddim)
|
||||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||||
|
@ -238,7 +247,8 @@ def main():
|
||||||
if not opt.skip_save:
|
if not opt.skip_save:
|
||||||
for x_sample in x_samples_ddim:
|
for x_sample in x_samples_ddim:
|
||||||
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
|
||||||
Image.fromarray(x_sample.astype(np.uint8)).save(os.path.join(sample_path, f"{base_count:05}.png"))
|
Image.fromarray(x_sample.astype(np.uint8)).save(
|
||||||
|
os.path.join(sample_path, f"{base_count:05}.png"))
|
||||||
base_count += 1
|
base_count += 1
|
||||||
all_samples.append(x_samples_ddim)
|
all_samples.append(x_samples_ddim)
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue