initial code to try and resume larger models from smaller models

This commit is contained in:
Patrick Esser 2022-06-11 18:35:49 -04:00
parent a66b27b149
commit 250f89c1a3

View file

@ -14,6 +14,7 @@ from torch.optim.lr_scheduler import LambdaLR
from einops import rearrange, repeat
from contextlib import contextmanager, nullcontext
from functools import partial
import itertools
from tqdm import tqdm
from torchvision.utils import make_grid
from pytorch_lightning.utilities.distributed import rank_zero_only
@ -72,6 +73,7 @@ class DDPM(pl.LightningModule):
use_positional_encodings=False,
learn_logvar=False,
logvar_init=0.,
make_it_fit=False,
):
super().__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
@ -101,6 +103,7 @@ class DDPM(pl.LightningModule):
if monitor is not None:
self.monitor = monitor
self.make_it_fit = make_it_fit
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet)
@ -184,6 +187,7 @@ class DDPM(pl.LightningModule):
if context is not None:
print(f"{context}: Restored training weights")
@torch.no_grad()
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
sd = torch.load(path, map_location="cpu")
if "state_dict" in list(sd.keys()):
@ -194,6 +198,50 @@ class DDPM(pl.LightningModule):
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
if self.make_it_fit:
n_params = len([name for name, _ in
itertools.chain(self.named_parameters(),
self.named_buffers())])
for name, param in tqdm(
itertools.chain(self.named_parameters(),
self.named_buffers()),
desc="Fitting old weights to new weights",
total=n_params
):
if not name in sd:
continue
old_shape = sd[name].shape
new_shape = param.shape
assert len(old_shape)==len(new_shape)
if len(new_shape) > 2:
# we only modify first two axes
assert new_shape[2:] == old_shape[2:]
# assumes first axis corresponds to output dim
if not new_shape == old_shape:
new_param = param.clone()
old_param = sd[name]
if len(new_shape) == 1:
for i in range(new_param.shape[0]):
new_param[i] = old_param[i % old_shape[0]]
elif len(new_shape) >= 2:
for i in range(new_param.shape[0]):
for j in range(new_param.shape[1]):
new_param[i, j] = old_param[i % old_shape[0], j % old_shape[1]]
n_used_old = torch.ones(old_shape[1])
for j in range(new_param.shape[1]):
n_used_old[j % old_shape[1]] += 1
n_used_new = torch.zeros(new_shape[1])
for j in range(new_param.shape[1]):
n_used_new[j] = n_used_old[j % old_shape[1]]
n_used_new = n_used_new[None, :]
while len(n_used_new.shape) < len(new_shape):
n_used_new = n_used_new.unsqueeze(-1)
new_param /= n_used_new
sd[name] = new_param
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")