sampling can be addictive

This commit is contained in:
rromb 2022-06-29 23:39:55 +02:00
parent 3809ba7046
commit 181d1ad8f2
6 changed files with 88 additions and 39 deletions

View file

@ -7,6 +7,7 @@ from functools import partial
from einops import rearrange from einops import rearrange
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldm.models.diffusion.sampling_util import renorm_thresholding, norm_thresholding, spatial_norm_thresholding
class DDIMSampler(object): class DDIMSampler(object):
@ -216,30 +217,7 @@ class DDIMSampler(object):
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
if dynamic_threshold is not None: if dynamic_threshold is not None:
# renorm pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
pred_max = pred_x0.max()
pred_min = pred_x0.min()
pred_x0 = (pred_x0-pred_min)/(pred_max-pred_min) # 0 ... 1
pred_x0 = 2*pred_x0 - 1. # -1 ... 1
s = torch.quantile(
rearrange(pred_x0, 'b ... -> b (...)').abs(),
dynamic_threshold,
dim=-1
)
s.clamp_(min=1.0)
s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
# clip by threshold
#pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
# temporary hack: numpy on cpu
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
pred_x0 = torch.tensor(pred_x0).to(self.model.device)
# re.renorm
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
pred_x0 = (pred_max-pred_min)*pred_x0 + pred_min # orig range
# direction pointing to x_t # direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t

View file

@ -6,6 +6,7 @@ from tqdm import tqdm
from functools import partial from functools import partial
from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like from ldm.modules.diffusionmodules.util import make_ddim_sampling_parameters, make_ddim_timesteps, noise_like
from ldm.models.diffusion.sampling_util import norm_thresholding
class PLMSSampler(object): class PLMSSampler(object):
@ -77,6 +78,7 @@ class PLMSSampler(object):
unconditional_guidance_scale=1., unconditional_guidance_scale=1.,
unconditional_conditioning=None, unconditional_conditioning=None,
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ... # this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
dynamic_threshold=None,
**kwargs **kwargs
): ):
if conditioning is not None: if conditioning is not None:
@ -108,6 +110,7 @@ class PLMSSampler(object):
log_every_t=log_every_t, log_every_t=log_every_t,
unconditional_guidance_scale=unconditional_guidance_scale, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning, unconditional_conditioning=unconditional_conditioning,
dynamic_threshold=dynamic_threshold,
) )
return samples, intermediates return samples, intermediates
@ -117,7 +120,8 @@ class PLMSSampler(object):
callback=None, timesteps=None, quantize_denoised=False, callback=None, timesteps=None, quantize_denoised=False,
mask=None, x0=None, img_callback=None, log_every_t=100, mask=None, x0=None, img_callback=None, log_every_t=100,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None,): unconditional_guidance_scale=1., unconditional_conditioning=None,
dynamic_threshold=None):
device = self.model.betas.device device = self.model.betas.device
b = shape[0] b = shape[0]
if x_T is None: if x_T is None:
@ -155,7 +159,8 @@ class PLMSSampler(object):
corrector_kwargs=corrector_kwargs, corrector_kwargs=corrector_kwargs,
unconditional_guidance_scale=unconditional_guidance_scale, unconditional_guidance_scale=unconditional_guidance_scale,
unconditional_conditioning=unconditional_conditioning, unconditional_conditioning=unconditional_conditioning,
old_eps=old_eps, t_next=ts_next) old_eps=old_eps, t_next=ts_next,
dynamic_threshold=dynamic_threshold)
img, pred_x0, e_t = outs img, pred_x0, e_t = outs
old_eps.append(e_t) old_eps.append(e_t)
if len(old_eps) >= 4: if len(old_eps) >= 4:
@ -172,7 +177,8 @@ class PLMSSampler(object):
@torch.no_grad() @torch.no_grad()
def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False, def p_sample_plms(self, x, c, t, index, repeat_noise=False, use_original_steps=False, quantize_denoised=False,
temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None, temperature=1., noise_dropout=0., score_corrector=None, corrector_kwargs=None,
unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None): unconditional_guidance_scale=1., unconditional_conditioning=None, old_eps=None, t_next=None,
dynamic_threshold=None):
b, *_, device = *x.shape, x.device b, *_, device = *x.shape, x.device
def get_model_output(x, t): def get_model_output(x, t):
@ -207,6 +213,8 @@ class PLMSSampler(object):
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt() pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
if quantize_denoised: if quantize_denoised:
pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0) pred_x0, _, *_ = self.model.first_stage_model.quantize(pred_x0)
if dynamic_threshold is not None:
pred_x0 = norm_thresholding(pred_x0, dynamic_threshold)
# direction pointing to x_t # direction pointing to x_t
dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t dir_xt = (1. - a_prev - sigma_t**2).sqrt() * e_t
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature

View file

@ -0,0 +1,50 @@
import torch
import numpy as np
def append_dims(x, target_dims):
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
dims_to_append = target_dims - x.ndim
if dims_to_append < 0:
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
return x[(...,) + (None,) * dims_to_append]
def renorm_thresholding(x0, value):
# renorm
pred_max = x0.max()
pred_min = x0.min()
pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
s = torch.quantile(
rearrange(pred_x0, 'b ... -> b (...)').abs(),
value,
dim=-1
)
s.clamp_(min=1.0)
s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
# clip by threshold
# pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
# temporary hack: numpy on cpu
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
pred_x0 = torch.tensor(pred_x0).to(self.model.device)
# re.renorm
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
return pred_x0
def norm_thresholding(x0, value):
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
return x0 * (value / s)
def spatial_norm_thresholding(x0, value):
# b c h w
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
return x0 * (value / s)

View file

@ -0,0 +1,6 @@
the Tower of Babel by J.M.W. Turner
advertisement for a psychedelic virtual reality headset, 16 bit sprite pixel art
the gateway between dreams, trending on ArtStation
Humanity is killed by AI, by James Gurney
A fantasy painting of a city in a deep valley by Ivan Aivazovsky
Darth Vader at Woodstock (1969)

View file

@ -4,7 +4,7 @@ Bunny Vikings
The Demogorgon from Stranger Thinhs holding a basketball The Demogorgon from Stranger Thinhs holding a basketball
Hamster in my microwave Hamster in my microwave
a courtroom sketch of a Ford Transit van a courtroom sketch of a Ford Transit van
PS1 Hagrid ad MCDonalds PS1 Hagrid at MCDonalds
Karl Marx in KFC Logo Karl Marx in KFC Logo
Moai Statue giving a TED talk Moai Statue giving a TED talk
wahing machine trail cam wahing machine trail cam

View file

@ -8,6 +8,7 @@ from itertools import islice
from einops import rearrange from einops import rearrange
from torchvision.utils import make_grid from torchvision.utils import make_grid
import time import time
from pytorch_lightning import seed_everything
from ldm.util import instantiate_from_config from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler from ldm.models.diffusion.ddim import DDIMSampler
@ -167,8 +168,14 @@ if __name__ == "__main__":
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt", default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
help="path to checkpoint of model", help="path to checkpoint of model",
) )
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
opt = parser.parse_args() opt = parser.parse_args()
seed_everything(opt.seed)
config = OmegaConf.load(f"{opt.config}") config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}") model = load_model_from_config(config, f"{opt.ckpt}")
@ -205,8 +212,8 @@ if __name__ == "__main__":
with torch.no_grad(): with torch.no_grad():
with model.ema_scope(): with model.ema_scope():
tic = time.time() tic = time.time()
for n in trange(opt.n_iter, desc="Sampling"):
all_samples = list() all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"): for prompts in tqdm(data, desc="data"):
uc = None uc = None
if opt.scale != 1.0: if opt.scale != 1.0: