prepare large-scale clip encoder training

This commit is contained in:
rromb 2022-05-31 15:24:23 +02:00
parent de7a003484
commit 174340dd4c

View file

@ -74,8 +74,9 @@ data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
batch_size: 12
batch_size: 56
num_workers: 4
multinode: True
train:
shards: '{000000..231317}.tar -'
shuffle: 10000
@ -89,19 +90,19 @@ data:
params:
size: 256
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{231318..231349}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 256
# # NOTE use enough shards to avoid empty validation loops in workers
# validation:
# shards: '{231318..231349}.tar -'
# shuffle: 0
# image_key: jpg
# image_transforms:
# - target: torchvision.transforms.Resize
# params:
# size: 256
# interpolation: 3
# - target: torchvision.transforms.CenterCrop
# params:
# size: 256
lightning:
@ -118,8 +119,6 @@ lightning:
trainer:
#replace_sampler_ddp: False
benchmark: True
val_check_interval: 50000
#val_check_interval: 50000
num_sanity_val_steps: 0
accumulate_grad_batches: 2