add v1 hr subset of aesthetics training, resume v3

This commit is contained in:
Patrick Esser 2022-07-22 09:53:43 +00:00
parent e5b276bcf9
commit 099376de22
4 changed files with 94 additions and 4 deletions

View file

@ -0,0 +1,42 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
#conda activate stable
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data
EXTRA="--seed 718 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline.ckpt"
# only images >= 512
EXTRA="${EXTRA} data.params.min_size=512"
# time to decay
#EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[50000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,43 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-iahr-torch111
#SBATCH --nodes 20
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
#all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_iahr_torch111/launcher.sh

View file

@ -16,13 +16,16 @@ echo "##########################################"
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3 # no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt # env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)" eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable #conda activate stable
# torch 1.11 to avoid bug in ckpt restoring
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion cd /fsx/stable-diffusion/stable-diffusion
CONFIG=configs/stable-diffusion/v3_pretraining.yaml CONFIG=configs/stable-diffusion/v3_pretraining.yaml
# resume and set new seed to reshuffle data # resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/rlogs/2022-07-11T22-57-10_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt" #EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/rlogs/2022-07-11T22-57-10_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt"
EXTRA="--seed 715 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-14T21-03-49_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt"
# custom logdir # custom logdir
#EXTRA="${EXTRA} --logdir rlogs" #EXTRA="${EXTRA} --logdir rlogs"
@ -30,4 +33,7 @@ EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/
# debugging # debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50" #EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
# detect bad gpus early on
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -11,8 +11,7 @@
module load intelmpi module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so" export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"