add minexample
This commit is contained in:
parent
ddb9ce74f1
commit
075567889f
1 changed files with 103 additions and 0 deletions
103
scripts/mnist-distributed.py
Normal file
103
scripts/mnist-distributed.py
Normal file
|
@ -0,0 +1,103 @@
|
|||
import os
|
||||
from datetime import datetime
|
||||
import argparse
|
||||
import torch.multiprocessing as mp
|
||||
import torchvision
|
||||
import torchvision.transforms as transforms
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.distributed as dist
|
||||
from apex.parallel import DistributedDataParallel as DDP
|
||||
from apex import amp
|
||||
|
||||
|
||||
def main():
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('-n', '--nodes', default=1, type=int, metavar='N')
|
||||
parser.add_argument('-g', '--gpus', default=1, type=int,
|
||||
help='number of gpus per node')
|
||||
parser.add_argument('-nr', '--nr', default=0, type=int,
|
||||
help='ranking within the nodes')
|
||||
parser.add_argument('--epochs', default=2, type=int, metavar='N',
|
||||
help='number of total epochs to run')
|
||||
args = parser.parse_args()
|
||||
args.world_size = args.gpus * args.nodes
|
||||
os.environ['MASTER_ADDR'] = '10.0.115.33'
|
||||
os.environ['MASTER_PORT'] = '8888'
|
||||
mp.spawn(train, nprocs=args.gpus, args=(args,))
|
||||
|
||||
|
||||
class ConvNet(nn.Module):
|
||||
def __init__(self, num_classes=10):
|
||||
super(ConvNet, self).__init__()
|
||||
self.layer1 = nn.Sequential(
|
||||
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2),
|
||||
nn.BatchNorm2d(16),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2))
|
||||
self.layer2 = nn.Sequential(
|
||||
nn.Conv2d(16, 32, kernel_size=5, stride=1, padding=2),
|
||||
nn.BatchNorm2d(32),
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=2))
|
||||
self.fc = nn.Linear(7*7*32, num_classes)
|
||||
|
||||
def forward(self, x):
|
||||
out = self.layer1(x)
|
||||
out = self.layer2(out)
|
||||
out = out.reshape(out.size(0), -1)
|
||||
out = self.fc(out)
|
||||
return out
|
||||
|
||||
|
||||
def train(gpu, args):
|
||||
rank = args.nr * args.gpus + gpu
|
||||
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank)
|
||||
torch.manual_seed(0)
|
||||
model = ConvNet()
|
||||
torch.cuda.set_device(gpu)
|
||||
model.cuda(gpu)
|
||||
batch_size = 100
|
||||
# define loss function (criterion) and optimizer
|
||||
criterion = nn.CrossEntropyLoss().cuda(gpu)
|
||||
optimizer = torch.optim.SGD(model.parameters(), 1e-4)
|
||||
# Wrap the model
|
||||
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu])
|
||||
# Data loading code
|
||||
train_dataset = torchvision.datasets.MNIST(root='./data',
|
||||
train=True,
|
||||
transform=transforms.ToTensor(),
|
||||
download=True)
|
||||
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset,
|
||||
num_replicas=args.world_size,
|
||||
rank=rank)
|
||||
train_loader = torch.utils.data.DataLoader(dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=False,
|
||||
num_workers=0,
|
||||
pin_memory=True,
|
||||
sampler=train_sampler)
|
||||
|
||||
start = datetime.now()
|
||||
total_step = len(train_loader)
|
||||
for epoch in range(args.epochs):
|
||||
for i, (images, labels) in enumerate(train_loader):
|
||||
images = images.cuda(non_blocking=True)
|
||||
labels = labels.cuda(non_blocking=True)
|
||||
# Forward pass
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, labels)
|
||||
|
||||
# Backward and optimize
|
||||
optimizer.zero_grad()
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
if (i + 1) % 100 == 0 and gpu == 0:
|
||||
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch + 1, args.epochs, i + 1, total_step,
|
||||
loss.item()))
|
||||
if gpu == 0:
|
||||
print("Training complete in: " + str(datetime.now() - start))
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in a new issue