95 lines
2.5 KiB
YAML
95 lines
2.5 KiB
YAML
|
model:
|
||
|
base_learning_rate: 5.0e-5 # set to target_lr by starting main.py with '--scale_lr False'
|
||
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||
|
params:
|
||
|
linear_start: 0.0015
|
||
|
linear_end: 0.0155
|
||
|
num_timesteps_cond: 1
|
||
|
log_every_t: 200
|
||
|
timesteps: 1000
|
||
|
loss_type: l1
|
||
|
first_stage_key: "image"
|
||
|
cond_stage_key: "image"
|
||
|
image_size: 32
|
||
|
channels: 4
|
||
|
cond_stage_trainable: False
|
||
|
concat_mode: False
|
||
|
scale_by_std: True
|
||
|
monitor: 'val/loss_simple_ema'
|
||
|
|
||
|
scheduler_config: # 10000 warmup steps
|
||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||
|
params:
|
||
|
warm_up_steps: [10000]
|
||
|
cycle_lengths: [10000000000000]
|
||
|
f_start: [1.e-6]
|
||
|
f_max: [1.]
|
||
|
f_min: [ 1.]
|
||
|
|
||
|
unet_config:
|
||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||
|
params:
|
||
|
image_size: 32
|
||
|
in_channels: 4
|
||
|
out_channels: 4
|
||
|
model_channels: 192
|
||
|
attention_resolutions: [ 1, 2, 4, 8 ] # 32, 16, 8, 4
|
||
|
num_res_blocks: 2
|
||
|
channel_mult: [ 1,2,2,4,4 ] # 32, 16, 8, 4, 2
|
||
|
num_heads: 8
|
||
|
use_scale_shift_norm: True
|
||
|
resblock_updown: True
|
||
|
|
||
|
first_stage_config:
|
||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||
|
params:
|
||
|
embed_dim: 4
|
||
|
monitor: "val/rec_loss"
|
||
|
ckpt_path: "/export/compvis-nfs/user/ablattma/logs/braket/2021-11-26T11-25-56_lsun_churches-convae-f8-ft_from_oi/checkpoints/step=000180071-fidfrechet_inception_distance=2.335.ckpt"
|
||
|
ddconfig:
|
||
|
double_z: True
|
||
|
z_channels: 4
|
||
|
resolution: 256
|
||
|
in_channels: 3
|
||
|
out_ch: 3
|
||
|
ch: 128
|
||
|
ch_mult: [ 1,2,4,4 ] # num_down = len(ch_mult)-1
|
||
|
num_res_blocks: 2
|
||
|
attn_resolutions: [ ]
|
||
|
dropout: 0.0
|
||
|
lossconfig:
|
||
|
target: torch.nn.Identity
|
||
|
|
||
|
cond_stage_config: "__is_unconditional__"
|
||
|
|
||
|
data:
|
||
|
target: main.DataModuleFromConfig
|
||
|
params:
|
||
|
batch_size: 24 # TODO: was 96 in our experiments
|
||
|
num_workers: 5
|
||
|
wrap: False
|
||
|
train:
|
||
|
target: ldm.data.lsun.LSUNChurchesTrain
|
||
|
params:
|
||
|
size: 256
|
||
|
validation:
|
||
|
target: ldm.data.lsun.LSUNChurchesValidation
|
||
|
params:
|
||
|
size: 256
|
||
|
|
||
|
lightning:
|
||
|
callbacks:
|
||
|
image_logger:
|
||
|
target: main.ImageLogger
|
||
|
params:
|
||
|
batch_frequency: 1000 # TODO 5000
|
||
|
max_images: 8
|
||
|
increase_log_steps: False
|
||
|
|
||
|
metrics_over_trainsteps_checkpoint:
|
||
|
target: pytorch_lightning.callbacks.ModelCheckpoint
|
||
|
params:
|
||
|
every_n_train_steps: 20000
|
||
|
|
||
|
trainer:
|
||
|
benchmark: True
|