50 lines
1.6 KiB
Python
50 lines
1.6 KiB
Python
|
import torch
|
||
|
import numpy as np
|
||
|
|
||
|
|
||
|
def append_dims(x, target_dims):
|
||
|
"""Appends dimensions to the end of a tensor until it has target_dims dimensions.
|
||
|
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py"""
|
||
|
dims_to_append = target_dims - x.ndim
|
||
|
if dims_to_append < 0:
|
||
|
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less')
|
||
|
return x[(...,) + (None,) * dims_to_append]
|
||
|
|
||
|
|
||
|
def renorm_thresholding(x0, value):
|
||
|
# renorm
|
||
|
pred_max = x0.max()
|
||
|
pred_min = x0.min()
|
||
|
pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1
|
||
|
pred_x0 = 2 * pred_x0 - 1. # -1 ... 1
|
||
|
|
||
|
s = torch.quantile(
|
||
|
rearrange(pred_x0, 'b ... -> b (...)').abs(),
|
||
|
value,
|
||
|
dim=-1
|
||
|
)
|
||
|
s.clamp_(min=1.0)
|
||
|
s = s.view(-1, *((1,) * (pred_x0.ndim - 1)))
|
||
|
|
||
|
# clip by threshold
|
||
|
# pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max
|
||
|
|
||
|
# temporary hack: numpy on cpu
|
||
|
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy()
|
||
|
pred_x0 = torch.tensor(pred_x0).to(self.model.device)
|
||
|
|
||
|
# re.renorm
|
||
|
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1
|
||
|
pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range
|
||
|
return pred_x0
|
||
|
|
||
|
|
||
|
def norm_thresholding(x0, value):
|
||
|
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim)
|
||
|
return x0 * (value / s)
|
||
|
|
||
|
|
||
|
def spatial_norm_thresholding(x0, value):
|
||
|
# b c h w
|
||
|
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value)
|
||
|
return x0 * (value / s)
|