2022-05-30 15:09:42 +02:00
|
|
|
import numpy as np
|
|
|
|
import random
|
|
|
|
import string
|
|
|
|
from torch.utils.data import Dataset, Subset
|
|
|
|
|
|
|
|
class DummyData(Dataset):
|
|
|
|
def __init__(self, length, size):
|
|
|
|
self.length = length
|
|
|
|
self.size = size
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.length
|
|
|
|
|
|
|
|
def __getitem__(self, i):
|
|
|
|
x = np.random.randn(*self.size)
|
|
|
|
letters = string.ascii_lowercase
|
|
|
|
y = ''.join(random.choice(string.ascii_lowercase) for i in range(10))
|
|
|
|
return {"jpg": x, "txt": y}
|
2022-06-05 19:21:22 +02:00
|
|
|
|
|
|
|
|
|
|
|
class DummyDataWithEmbeddings(Dataset):
|
|
|
|
def __init__(self, length, size, emb_size):
|
|
|
|
self.length = length
|
|
|
|
self.size = size
|
|
|
|
self.emb_size = emb_size
|
|
|
|
|
|
|
|
def __len__(self):
|
|
|
|
return self.length
|
|
|
|
|
|
|
|
def __getitem__(self, i):
|
|
|
|
x = np.random.randn(*self.size)
|
|
|
|
y = np.random.randn(*self.emb_size).astype(np.float32)
|
|
|
|
return {"jpg": x, "txt": y}
|
|
|
|
|