2022-06-13 00:39:48 +02:00
|
|
|
model:
|
|
|
|
base_learning_rate: 1.0e-04
|
|
|
|
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
|
|
|
params:
|
|
|
|
low_scale_key: "LR_image" # TODO: adapt
|
|
|
|
linear_start: 0.001
|
|
|
|
linear_end: 0.015
|
|
|
|
num_timesteps_cond: 1
|
|
|
|
log_every_t: 200
|
|
|
|
timesteps: 1000
|
|
|
|
first_stage_key: "image"
|
|
|
|
#first_stage_key: "jpg" # TODO: use this later
|
|
|
|
cond_stage_key: "caption"
|
|
|
|
#cond_stage_key: "txt" # TODO: use this later
|
|
|
|
image_size: 64
|
|
|
|
channels: 16
|
|
|
|
cond_stage_trainable: false
|
|
|
|
conditioning_key: "hybrid-adm"
|
|
|
|
monitor: val/loss_simple_ema
|
|
|
|
scale_factor: 0.22765929 # magic number
|
|
|
|
|
|
|
|
low_scale_config:
|
|
|
|
target: ldm.modules.encoders.modules.LowScaleEncoder
|
|
|
|
params:
|
2022-06-13 10:43:41 +02:00
|
|
|
scale_factor: 0.18215
|
2022-06-13 00:39:48 +02:00
|
|
|
linear_start: 0.00085
|
|
|
|
linear_end: 0.0120
|
|
|
|
timesteps: 1000
|
2022-06-13 10:43:41 +02:00
|
|
|
max_noise_level: 100
|
2022-06-13 00:39:48 +02:00
|
|
|
output_size: 64
|
|
|
|
model_config:
|
|
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
|
|
params:
|
|
|
|
embed_dim: 4
|
|
|
|
monitor: val/rec_loss
|
|
|
|
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
|
|
|
ddconfig:
|
|
|
|
double_z: true
|
|
|
|
z_channels: 4
|
|
|
|
resolution: 256
|
|
|
|
in_channels: 3
|
|
|
|
out_ch: 3
|
|
|
|
ch: 128
|
|
|
|
ch_mult:
|
|
|
|
- 1
|
|
|
|
- 2
|
|
|
|
- 4
|
|
|
|
- 4
|
|
|
|
num_res_blocks: 2
|
|
|
|
attn_resolutions: [ ]
|
|
|
|
dropout: 0.0
|
|
|
|
lossconfig:
|
|
|
|
target: torch.nn.Identity
|
|
|
|
|
|
|
|
scheduler_config: # 10000 warmup steps
|
|
|
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
|
|
|
params:
|
|
|
|
warm_up_steps: [ 10000 ]
|
|
|
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
|
|
|
f_start: [ 1.e-6 ]
|
|
|
|
f_max: [ 1. ]
|
|
|
|
f_min: [ 1. ]
|
|
|
|
|
|
|
|
unet_config:
|
|
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
|
|
params:
|
|
|
|
num_classes: 1000 # timesteps for noise conditoining
|
|
|
|
image_size: 64 # not really needed
|
|
|
|
in_channels: 20
|
|
|
|
out_channels: 16
|
|
|
|
model_channels: 32 # TODO: more
|
|
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
|
|
num_res_blocks: 2
|
|
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
|
|
|
num_heads: 8
|
|
|
|
use_spatial_transformer: True
|
|
|
|
transformer_depth: 1
|
|
|
|
context_dim: 768
|
|
|
|
use_checkpoint: True
|
|
|
|
legacy: False
|
|
|
|
|
|
|
|
first_stage_config:
|
|
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
|
|
params:
|
|
|
|
embed_dim: 16
|
|
|
|
monitor: val/rec_loss
|
|
|
|
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
|
|
|
|
ddconfig:
|
|
|
|
double_z: True
|
|
|
|
z_channels: 16
|
|
|
|
resolution: 256
|
|
|
|
in_channels: 3
|
|
|
|
out_ch: 3
|
|
|
|
ch: 128
|
|
|
|
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
|
|
|
num_res_blocks: 2
|
|
|
|
attn_resolutions: [ 16 ]
|
|
|
|
dropout: 0.0
|
|
|
|
lossconfig:
|
|
|
|
target: torch.nn.Identity
|
|
|
|
|
|
|
|
cond_stage_config:
|
|
|
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
|
|
|
|
|
|
|
|
|
|
#data:
|
|
|
|
# target: ldm.data.laion.WebDataModuleFromConfig
|
|
|
|
# params:
|
|
|
|
# tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
|
|
|
# batch_size: 4
|
|
|
|
# num_workers: 4
|
|
|
|
# multinode: True
|
|
|
|
# min_size: 256 # TODO: experiment. Note: for 2B, images are stored at max 384 resolution
|
|
|
|
# train:
|
|
|
|
# shards: '{000000..231317}.tar -'
|
|
|
|
# shuffle: 10000
|
|
|
|
# image_key: jpg
|
|
|
|
# image_transforms:
|
|
|
|
# - target: torchvision.transforms.Resize
|
|
|
|
# params:
|
|
|
|
# size: 1024
|
|
|
|
# interpolation: 3
|
|
|
|
# - target: torchvision.transforms.RandomCrop
|
|
|
|
# params:
|
|
|
|
# size: 1024
|
|
|
|
#
|
|
|
|
# # NOTE use enough shards to avoid empty validation loops in workers
|
|
|
|
# validation:
|
|
|
|
# shards: '{231318..231349}.tar -'
|
|
|
|
# shuffle: 0
|
|
|
|
# image_key: jpg
|
|
|
|
# image_transforms:
|
|
|
|
# - target: torchvision.transforms.Resize
|
|
|
|
# params:
|
|
|
|
# size: 1024
|
|
|
|
# interpolation: 3
|
|
|
|
# - target: torchvision.transforms.CenterCrop
|
|
|
|
# params:
|
|
|
|
# size: 1024
|
|
|
|
|
|
|
|
data:
|
|
|
|
target: main.DataModuleFromConfig
|
|
|
|
params:
|
|
|
|
batch_size: 8
|
|
|
|
num_workers: 7
|
|
|
|
wrap: false
|
|
|
|
train:
|
|
|
|
target: ldm.data.imagenet.ImageNetSRTrain
|
|
|
|
params:
|
|
|
|
size: 1024
|
|
|
|
downscale_f: 4
|
|
|
|
degradation: "cv_nearest"
|
|
|
|
|
|
|
|
lightning:
|
|
|
|
callbacks:
|
|
|
|
image_logger:
|
|
|
|
target: main.ImageLogger
|
|
|
|
params:
|
|
|
|
batch_frequency: 10
|
|
|
|
max_images: 4
|
|
|
|
increase_log_steps: False
|
|
|
|
log_first_step: False
|
|
|
|
log_images_kwargs:
|
2022-06-13 10:43:41 +02:00
|
|
|
sample: False
|
2022-06-13 00:39:48 +02:00
|
|
|
use_ema_scope: False
|
|
|
|
inpaint: False
|
|
|
|
plot_progressive_rows: False
|
|
|
|
plot_diffusion_rows: False
|
|
|
|
N: 4
|
2022-06-13 10:43:41 +02:00
|
|
|
#unconditional_guidance_scale: 3.0
|
|
|
|
#unconditional_guidance_label: [""]
|
2022-06-13 00:39:48 +02:00
|
|
|
|
|
|
|
trainer:
|
|
|
|
benchmark: True
|
|
|
|
# val_check_interval: 5000000 # really sorry # TODO: bring back in
|
|
|
|
num_sanity_val_steps: 0
|
|
|
|
accumulate_grad_batches: 1
|