677 lines
25 KiB
Python
677 lines
25 KiB
Python
|
import argparse
|
||
|
import io
|
||
|
import os
|
||
|
import random
|
||
|
import warnings
|
||
|
import zipfile
|
||
|
from abc import ABC, abstractmethod
|
||
|
from contextlib import contextmanager
|
||
|
from functools import partial
|
||
|
from multiprocessing import cpu_count
|
||
|
from multiprocessing.pool import ThreadPool
|
||
|
from typing import Iterable, Optional, Tuple
|
||
|
import yaml
|
||
|
|
||
|
import numpy as np
|
||
|
import requests
|
||
|
import tensorflow.compat.v1 as tf
|
||
|
from scipy import linalg
|
||
|
from tqdm.auto import tqdm
|
||
|
|
||
|
INCEPTION_V3_URL = "https://openaipublic.blob.core.windows.net/diffusion/jul-2021/ref_batches/classify_image_graph_def.pb"
|
||
|
INCEPTION_V3_PATH = "classify_image_graph_def.pb"
|
||
|
|
||
|
FID_POOL_NAME = "pool_3:0"
|
||
|
FID_SPATIAL_NAME = "mixed_6/conv:0"
|
||
|
|
||
|
REQUIREMENTS = f"This script has the following requirements: \n" \
|
||
|
'tensorflow-gpu>=2.0' + "\n" + 'scipy' + "\n" + "requests" + "\n" + "tqdm"
|
||
|
|
||
|
|
||
|
def main():
|
||
|
parser = argparse.ArgumentParser()
|
||
|
parser.add_argument("--ref_batch", help="path to reference batch npz file")
|
||
|
parser.add_argument("--sample_batch", help="path to sample batch npz file")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
config = tf.ConfigProto(
|
||
|
allow_soft_placement=True # allows DecodeJpeg to run on CPU in Inception graph
|
||
|
)
|
||
|
config.gpu_options.allow_growth = True
|
||
|
evaluator = Evaluator(tf.Session(config=config))
|
||
|
|
||
|
print("warming up TensorFlow...")
|
||
|
# This will cause TF to print a bunch of verbose stuff now rather
|
||
|
# than after the next print(), to help prevent confusion.
|
||
|
evaluator.warmup()
|
||
|
|
||
|
print("computing reference batch activations...")
|
||
|
ref_acts = evaluator.read_activations(args.ref_batch)
|
||
|
print("computing/reading reference batch statistics...")
|
||
|
ref_stats, ref_stats_spatial = evaluator.read_statistics(args.ref_batch, ref_acts)
|
||
|
|
||
|
print("computing sample batch activations...")
|
||
|
sample_acts = evaluator.read_activations(args.sample_batch)
|
||
|
print("computing/reading sample batch statistics...")
|
||
|
sample_stats, sample_stats_spatial = evaluator.read_statistics(args.sample_batch, sample_acts)
|
||
|
|
||
|
print("Computing evaluations...")
|
||
|
is_ = evaluator.compute_inception_score(sample_acts[0])
|
||
|
print("Inception Score:", is_)
|
||
|
fid = sample_stats.frechet_distance(ref_stats)
|
||
|
print("FID:", fid)
|
||
|
sfid = sample_stats_spatial.frechet_distance(ref_stats_spatial)
|
||
|
print("sFID:", sfid)
|
||
|
prec, recall = evaluator.compute_prec_recall(ref_acts[0], sample_acts[0])
|
||
|
print("Precision:", prec)
|
||
|
print("Recall:", recall)
|
||
|
|
||
|
savepath = '/'.join(args.sample_batch.split('/')[:-1])
|
||
|
results_file = os.path.join(savepath,'evaluation_metrics.yaml')
|
||
|
print(f'Saving evaluation results to "{results_file}"')
|
||
|
|
||
|
results = {
|
||
|
'IS': is_,
|
||
|
'FID': fid,
|
||
|
'sFID': sfid,
|
||
|
'Precision:':prec,
|
||
|
'Recall': recall
|
||
|
}
|
||
|
|
||
|
with open(results_file, 'w') as f:
|
||
|
yaml.dump(results, f, default_flow_style=False)
|
||
|
|
||
|
class InvalidFIDException(Exception):
|
||
|
pass
|
||
|
|
||
|
|
||
|
class FIDStatistics:
|
||
|
def __init__(self, mu: np.ndarray, sigma: np.ndarray):
|
||
|
self.mu = mu
|
||
|
self.sigma = sigma
|
||
|
|
||
|
def frechet_distance(self, other, eps=1e-6):
|
||
|
"""
|
||
|
Compute the Frechet distance between two sets of statistics.
|
||
|
"""
|
||
|
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L132
|
||
|
mu1, sigma1 = self.mu, self.sigma
|
||
|
mu2, sigma2 = other.mu, other.sigma
|
||
|
|
||
|
mu1 = np.atleast_1d(mu1)
|
||
|
mu2 = np.atleast_1d(mu2)
|
||
|
|
||
|
sigma1 = np.atleast_2d(sigma1)
|
||
|
sigma2 = np.atleast_2d(sigma2)
|
||
|
|
||
|
assert (
|
||
|
mu1.shape == mu2.shape
|
||
|
), f"Training and test mean vectors have different lengths: {mu1.shape}, {mu2.shape}"
|
||
|
assert (
|
||
|
sigma1.shape == sigma2.shape
|
||
|
), f"Training and test covariances have different dimensions: {sigma1.shape}, {sigma2.shape}"
|
||
|
|
||
|
diff = mu1 - mu2
|
||
|
|
||
|
# product might be almost singular
|
||
|
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
|
||
|
if not np.isfinite(covmean).all():
|
||
|
msg = (
|
||
|
"fid calculation produces singular product; adding %s to diagonal of cov estimates"
|
||
|
% eps
|
||
|
)
|
||
|
warnings.warn(msg)
|
||
|
offset = np.eye(sigma1.shape[0]) * eps
|
||
|
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
|
||
|
|
||
|
# numerical error might give slight imaginary component
|
||
|
if np.iscomplexobj(covmean):
|
||
|
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
|
||
|
m = np.max(np.abs(covmean.imag))
|
||
|
raise ValueError("Imaginary component {}".format(m))
|
||
|
covmean = covmean.real
|
||
|
|
||
|
tr_covmean = np.trace(covmean)
|
||
|
|
||
|
return diff.dot(diff) + np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
|
||
|
|
||
|
|
||
|
class Evaluator:
|
||
|
def __init__(
|
||
|
self,
|
||
|
session,
|
||
|
batch_size=64,
|
||
|
softmax_batch_size=512,
|
||
|
):
|
||
|
self.sess = session
|
||
|
self.batch_size = batch_size
|
||
|
self.softmax_batch_size = softmax_batch_size
|
||
|
self.manifold_estimator = ManifoldEstimator(session)
|
||
|
with self.sess.graph.as_default():
|
||
|
self.image_input = tf.placeholder(tf.float32, shape=[None, None, None, 3])
|
||
|
self.softmax_input = tf.placeholder(tf.float32, shape=[None, 2048])
|
||
|
self.pool_features, self.spatial_features = _create_feature_graph(self.image_input)
|
||
|
self.softmax = _create_softmax_graph(self.softmax_input)
|
||
|
|
||
|
def warmup(self):
|
||
|
self.compute_activations(np.zeros([1, 8, 64, 64, 3]))
|
||
|
|
||
|
def read_activations(self, npz_path: str) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
with open_npz_array(npz_path, "arr_0") as reader:
|
||
|
return self.compute_activations(reader.read_batches(self.batch_size))
|
||
|
|
||
|
def compute_activations(self, batches: Iterable[np.ndarray],silent=False) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
"""
|
||
|
Compute image features for downstream evals.
|
||
|
|
||
|
:param batches: a iterator over NHWC numpy arrays in [0, 255].
|
||
|
:return: a tuple of numpy arrays of shape [N x X], where X is a feature
|
||
|
dimension. The tuple is (pool_3, spatial).
|
||
|
"""
|
||
|
preds = []
|
||
|
spatial_preds = []
|
||
|
it = batches if silent else tqdm(batches)
|
||
|
for batch in it:
|
||
|
batch = batch.astype(np.float32)
|
||
|
pred, spatial_pred = self.sess.run(
|
||
|
[self.pool_features, self.spatial_features], {self.image_input: batch}
|
||
|
)
|
||
|
preds.append(pred.reshape([pred.shape[0], -1]))
|
||
|
spatial_preds.append(spatial_pred.reshape([spatial_pred.shape[0], -1]))
|
||
|
return (
|
||
|
np.concatenate(preds, axis=0),
|
||
|
np.concatenate(spatial_preds, axis=0),
|
||
|
)
|
||
|
|
||
|
def read_statistics(
|
||
|
self, npz_path: str, activations: Tuple[np.ndarray, np.ndarray]
|
||
|
) -> Tuple[FIDStatistics, FIDStatistics]:
|
||
|
obj = np.load(npz_path)
|
||
|
if "mu" in list(obj.keys()):
|
||
|
return FIDStatistics(obj["mu"], obj["sigma"]), FIDStatistics(
|
||
|
obj["mu_s"], obj["sigma_s"]
|
||
|
)
|
||
|
return tuple(self.compute_statistics(x) for x in activations)
|
||
|
|
||
|
def compute_statistics(self, activations: np.ndarray) -> FIDStatistics:
|
||
|
mu = np.mean(activations, axis=0)
|
||
|
sigma = np.cov(activations, rowvar=False)
|
||
|
return FIDStatistics(mu, sigma)
|
||
|
|
||
|
def compute_inception_score(self, activations: np.ndarray, split_size: int = 5000) -> float:
|
||
|
softmax_out = []
|
||
|
for i in range(0, len(activations), self.softmax_batch_size):
|
||
|
acts = activations[i : i + self.softmax_batch_size]
|
||
|
softmax_out.append(self.sess.run(self.softmax, feed_dict={self.softmax_input: acts}))
|
||
|
preds = np.concatenate(softmax_out, axis=0)
|
||
|
# https://github.com/openai/improved-gan/blob/4f5d1ec5c16a7eceb206f42bfc652693601e1d5c/inception_score/model.py#L46
|
||
|
scores = []
|
||
|
for i in range(0, len(preds), split_size):
|
||
|
part = preds[i : i + split_size]
|
||
|
kl = part * (np.log(part) - np.log(np.expand_dims(np.mean(part, 0), 0)))
|
||
|
kl = np.mean(np.sum(kl, 1))
|
||
|
scores.append(np.exp(kl))
|
||
|
return float(np.mean(scores))
|
||
|
|
||
|
def compute_prec_recall(
|
||
|
self, activations_ref: np.ndarray, activations_sample: np.ndarray
|
||
|
) -> Tuple[float, float]:
|
||
|
radii_1 = self.manifold_estimator.manifold_radii(activations_ref)
|
||
|
radii_2 = self.manifold_estimator.manifold_radii(activations_sample)
|
||
|
pr = self.manifold_estimator.evaluate_pr(
|
||
|
activations_ref, radii_1, activations_sample, radii_2
|
||
|
)
|
||
|
return (float(pr[0][0]), float(pr[1][0]))
|
||
|
|
||
|
|
||
|
class ManifoldEstimator:
|
||
|
"""
|
||
|
A helper for comparing manifolds of feature vectors.
|
||
|
|
||
|
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L57
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
session,
|
||
|
row_batch_size=10000,
|
||
|
col_batch_size=10000,
|
||
|
nhood_sizes=(3,),
|
||
|
clamp_to_percentile=None,
|
||
|
eps=1e-5,
|
||
|
):
|
||
|
"""
|
||
|
Estimate the manifold of given feature vectors.
|
||
|
|
||
|
:param session: the TensorFlow session.
|
||
|
:param row_batch_size: row batch size to compute pairwise distances
|
||
|
(parameter to trade-off between memory usage and performance).
|
||
|
:param col_batch_size: column batch size to compute pairwise distances.
|
||
|
:param nhood_sizes: number of neighbors used to estimate the manifold.
|
||
|
:param clamp_to_percentile: prune hyperspheres that have radius larger than
|
||
|
the given percentile.
|
||
|
:param eps: small number for numerical stability.
|
||
|
"""
|
||
|
self.distance_block = DistanceBlock(session)
|
||
|
self.row_batch_size = row_batch_size
|
||
|
self.col_batch_size = col_batch_size
|
||
|
self.nhood_sizes = nhood_sizes
|
||
|
self.num_nhoods = len(nhood_sizes)
|
||
|
self.clamp_to_percentile = clamp_to_percentile
|
||
|
self.eps = eps
|
||
|
|
||
|
def warmup(self):
|
||
|
feats, radii = (
|
||
|
np.zeros([1, 2048], dtype=np.float32),
|
||
|
np.zeros([1, 1], dtype=np.float32),
|
||
|
)
|
||
|
self.evaluate_pr(feats, radii, feats, radii)
|
||
|
|
||
|
def manifold_radii(self, features: np.ndarray) -> np.ndarray:
|
||
|
num_images = len(features)
|
||
|
|
||
|
# Estimate manifold of features by calculating distances to k-NN of each sample.
|
||
|
radii = np.zeros([num_images, self.num_nhoods], dtype=np.float32)
|
||
|
distance_batch = np.zeros([self.row_batch_size, num_images], dtype=np.float32)
|
||
|
seq = np.arange(max(self.nhood_sizes) + 1, dtype=np.int32)
|
||
|
|
||
|
for begin1 in range(0, num_images, self.row_batch_size):
|
||
|
end1 = min(begin1 + self.row_batch_size, num_images)
|
||
|
row_batch = features[begin1:end1]
|
||
|
|
||
|
for begin2 in range(0, num_images, self.col_batch_size):
|
||
|
end2 = min(begin2 + self.col_batch_size, num_images)
|
||
|
col_batch = features[begin2:end2]
|
||
|
|
||
|
# Compute distances between batches.
|
||
|
distance_batch[
|
||
|
0 : end1 - begin1, begin2:end2
|
||
|
] = self.distance_block.pairwise_distances(row_batch, col_batch)
|
||
|
|
||
|
# Find the k-nearest neighbor from the current batch.
|
||
|
radii[begin1:end1, :] = np.concatenate(
|
||
|
[
|
||
|
x[:, self.nhood_sizes]
|
||
|
for x in _numpy_partition(distance_batch[0 : end1 - begin1, :], seq, axis=1)
|
||
|
],
|
||
|
axis=0,
|
||
|
)
|
||
|
|
||
|
if self.clamp_to_percentile is not None:
|
||
|
max_distances = np.percentile(radii, self.clamp_to_percentile, axis=0)
|
||
|
radii[radii > max_distances] = 0
|
||
|
return radii
|
||
|
|
||
|
def evaluate(self, features: np.ndarray, radii: np.ndarray, eval_features: np.ndarray):
|
||
|
"""
|
||
|
Evaluate if new feature vectors are at the manifold.
|
||
|
"""
|
||
|
num_eval_images = eval_features.shape[0]
|
||
|
num_ref_images = radii.shape[0]
|
||
|
distance_batch = np.zeros([self.row_batch_size, num_ref_images], dtype=np.float32)
|
||
|
batch_predictions = np.zeros([num_eval_images, self.num_nhoods], dtype=np.int32)
|
||
|
max_realism_score = np.zeros([num_eval_images], dtype=np.float32)
|
||
|
nearest_indices = np.zeros([num_eval_images], dtype=np.int32)
|
||
|
|
||
|
for begin1 in range(0, num_eval_images, self.row_batch_size):
|
||
|
end1 = min(begin1 + self.row_batch_size, num_eval_images)
|
||
|
feature_batch = eval_features[begin1:end1]
|
||
|
|
||
|
for begin2 in range(0, num_ref_images, self.col_batch_size):
|
||
|
end2 = min(begin2 + self.col_batch_size, num_ref_images)
|
||
|
ref_batch = features[begin2:end2]
|
||
|
|
||
|
distance_batch[
|
||
|
0 : end1 - begin1, begin2:end2
|
||
|
] = self.distance_block.pairwise_distances(feature_batch, ref_batch)
|
||
|
|
||
|
# From the minibatch of new feature vectors, determine if they are in the estimated manifold.
|
||
|
# If a feature vector is inside a hypersphere of some reference sample, then
|
||
|
# the new sample lies at the estimated manifold.
|
||
|
# The radii of the hyperspheres are determined from distances of neighborhood size k.
|
||
|
samples_in_manifold = distance_batch[0 : end1 - begin1, :, None] <= radii
|
||
|
batch_predictions[begin1:end1] = np.any(samples_in_manifold, axis=1).astype(np.int32)
|
||
|
|
||
|
max_realism_score[begin1:end1] = np.max(
|
||
|
radii[:, 0] / (distance_batch[0 : end1 - begin1, :] + self.eps), axis=1
|
||
|
)
|
||
|
nearest_indices[begin1:end1] = np.argmin(distance_batch[0 : end1 - begin1, :], axis=1)
|
||
|
|
||
|
return {
|
||
|
"fraction": float(np.mean(batch_predictions)),
|
||
|
"batch_predictions": batch_predictions,
|
||
|
"max_realisim_score": max_realism_score,
|
||
|
"nearest_indices": nearest_indices,
|
||
|
}
|
||
|
|
||
|
def evaluate_pr(
|
||
|
self,
|
||
|
features_1: np.ndarray,
|
||
|
radii_1: np.ndarray,
|
||
|
features_2: np.ndarray,
|
||
|
radii_2: np.ndarray,
|
||
|
) -> Tuple[np.ndarray, np.ndarray]:
|
||
|
"""
|
||
|
Evaluate precision and recall efficiently.
|
||
|
|
||
|
:param features_1: [N1 x D] feature vectors for reference batch.
|
||
|
:param radii_1: [N1 x K1] radii for reference vectors.
|
||
|
:param features_2: [N2 x D] feature vectors for the other batch.
|
||
|
:param radii_2: [N x K2] radii for other vectors.
|
||
|
:return: a tuple of arrays for (precision, recall):
|
||
|
- precision: an np.ndarray of length K1
|
||
|
- recall: an np.ndarray of length K2
|
||
|
"""
|
||
|
features_1_status = np.zeros([len(features_1), radii_2.shape[1]], dtype=np.bool)
|
||
|
features_2_status = np.zeros([len(features_2), radii_1.shape[1]], dtype=np.bool)
|
||
|
for begin_1 in range(0, len(features_1), self.row_batch_size):
|
||
|
end_1 = begin_1 + self.row_batch_size
|
||
|
batch_1 = features_1[begin_1:end_1]
|
||
|
for begin_2 in range(0, len(features_2), self.col_batch_size):
|
||
|
end_2 = begin_2 + self.col_batch_size
|
||
|
batch_2 = features_2[begin_2:end_2]
|
||
|
batch_1_in, batch_2_in = self.distance_block.less_thans(
|
||
|
batch_1, radii_1[begin_1:end_1], batch_2, radii_2[begin_2:end_2]
|
||
|
)
|
||
|
features_1_status[begin_1:end_1] |= batch_1_in
|
||
|
features_2_status[begin_2:end_2] |= batch_2_in
|
||
|
return (
|
||
|
np.mean(features_2_status.astype(np.float64), axis=0),
|
||
|
np.mean(features_1_status.astype(np.float64), axis=0),
|
||
|
)
|
||
|
|
||
|
|
||
|
class DistanceBlock:
|
||
|
"""
|
||
|
Calculate pairwise distances between vectors.
|
||
|
|
||
|
Adapted from https://github.com/kynkaat/improved-precision-and-recall-metric/blob/f60f25e5ad933a79135c783fcda53de30f42c9b9/precision_recall.py#L34
|
||
|
"""
|
||
|
|
||
|
def __init__(self, session):
|
||
|
self.session = session
|
||
|
|
||
|
# Initialize TF graph to calculate pairwise distances.
|
||
|
with session.graph.as_default():
|
||
|
self._features_batch1 = tf.placeholder(tf.float32, shape=[None, None])
|
||
|
self._features_batch2 = tf.placeholder(tf.float32, shape=[None, None])
|
||
|
distance_block_16 = _batch_pairwise_distances(
|
||
|
tf.cast(self._features_batch1, tf.float16),
|
||
|
tf.cast(self._features_batch2, tf.float16),
|
||
|
)
|
||
|
self.distance_block = tf.cond(
|
||
|
tf.reduce_all(tf.math.is_finite(distance_block_16)),
|
||
|
lambda: tf.cast(distance_block_16, tf.float32),
|
||
|
lambda: _batch_pairwise_distances(self._features_batch1, self._features_batch2),
|
||
|
)
|
||
|
|
||
|
# Extra logic for less thans.
|
||
|
self._radii1 = tf.placeholder(tf.float32, shape=[None, None])
|
||
|
self._radii2 = tf.placeholder(tf.float32, shape=[None, None])
|
||
|
dist32 = tf.cast(self.distance_block, tf.float32)[..., None]
|
||
|
self._batch_1_in = tf.math.reduce_any(dist32 <= self._radii2, axis=1)
|
||
|
self._batch_2_in = tf.math.reduce_any(dist32 <= self._radii1[:, None], axis=0)
|
||
|
|
||
|
def pairwise_distances(self, U, V):
|
||
|
"""
|
||
|
Evaluate pairwise distances between two batches of feature vectors.
|
||
|
"""
|
||
|
return self.session.run(
|
||
|
self.distance_block,
|
||
|
feed_dict={self._features_batch1: U, self._features_batch2: V},
|
||
|
)
|
||
|
|
||
|
def less_thans(self, batch_1, radii_1, batch_2, radii_2):
|
||
|
return self.session.run(
|
||
|
[self._batch_1_in, self._batch_2_in],
|
||
|
feed_dict={
|
||
|
self._features_batch1: batch_1,
|
||
|
self._features_batch2: batch_2,
|
||
|
self._radii1: radii_1,
|
||
|
self._radii2: radii_2,
|
||
|
},
|
||
|
)
|
||
|
|
||
|
|
||
|
def _batch_pairwise_distances(U, V):
|
||
|
"""
|
||
|
Compute pairwise distances between two batches of feature vectors.
|
||
|
"""
|
||
|
with tf.variable_scope("pairwise_dist_block"):
|
||
|
# Squared norms of each row in U and V.
|
||
|
norm_u = tf.reduce_sum(tf.square(U), 1)
|
||
|
norm_v = tf.reduce_sum(tf.square(V), 1)
|
||
|
|
||
|
# norm_u as a column and norm_v as a row vectors.
|
||
|
norm_u = tf.reshape(norm_u, [-1, 1])
|
||
|
norm_v = tf.reshape(norm_v, [1, -1])
|
||
|
|
||
|
# Pairwise squared Euclidean distances.
|
||
|
D = tf.maximum(norm_u - 2 * tf.matmul(U, V, False, True) + norm_v, 0.0)
|
||
|
|
||
|
return D
|
||
|
|
||
|
|
||
|
class NpzArrayReader(ABC):
|
||
|
@abstractmethod
|
||
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
||
|
pass
|
||
|
|
||
|
@abstractmethod
|
||
|
def remaining(self) -> int:
|
||
|
pass
|
||
|
|
||
|
def read_batches(self, batch_size: int) -> Iterable[np.ndarray]:
|
||
|
def gen_fn():
|
||
|
while True:
|
||
|
batch = self.read_batch(batch_size)
|
||
|
if batch is None:
|
||
|
break
|
||
|
yield batch
|
||
|
|
||
|
rem = self.remaining()
|
||
|
num_batches = rem // batch_size + int(rem % batch_size != 0)
|
||
|
return BatchIterator(gen_fn, num_batches)
|
||
|
|
||
|
|
||
|
class BatchIterator:
|
||
|
def __init__(self, gen_fn, length):
|
||
|
self.gen_fn = gen_fn
|
||
|
self.length = length
|
||
|
|
||
|
def __len__(self):
|
||
|
return self.length
|
||
|
|
||
|
def __iter__(self):
|
||
|
return self.gen_fn()
|
||
|
|
||
|
|
||
|
class StreamingNpzArrayReader(NpzArrayReader):
|
||
|
def __init__(self, arr_f, shape, dtype):
|
||
|
self.arr_f = arr_f
|
||
|
self.shape = shape
|
||
|
self.dtype = dtype
|
||
|
self.idx = 0
|
||
|
|
||
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
||
|
if self.idx >= self.shape[0]:
|
||
|
return None
|
||
|
|
||
|
bs = min(batch_size, self.shape[0] - self.idx)
|
||
|
self.idx += bs
|
||
|
|
||
|
if self.dtype.itemsize == 0:
|
||
|
return np.ndarray([bs, *self.shape[1:]], dtype=self.dtype)
|
||
|
|
||
|
read_count = bs * np.prod(self.shape[1:])
|
||
|
read_size = int(read_count * self.dtype.itemsize)
|
||
|
data = _read_bytes(self.arr_f, read_size, "array data")
|
||
|
return np.frombuffer(data, dtype=self.dtype).reshape([bs, *self.shape[1:]])
|
||
|
|
||
|
def remaining(self) -> int:
|
||
|
return max(0, self.shape[0] - self.idx)
|
||
|
|
||
|
|
||
|
class MemoryNpzArrayReader(NpzArrayReader):
|
||
|
def __init__(self, arr):
|
||
|
self.arr = arr
|
||
|
self.idx = 0
|
||
|
|
||
|
@classmethod
|
||
|
def load(cls, path: str, arr_name: str):
|
||
|
with open(path, "rb") as f:
|
||
|
arr = np.load(f)[arr_name]
|
||
|
return cls(arr)
|
||
|
|
||
|
def read_batch(self, batch_size: int) -> Optional[np.ndarray]:
|
||
|
if self.idx >= self.arr.shape[0]:
|
||
|
return None
|
||
|
|
||
|
res = self.arr[self.idx : self.idx + batch_size]
|
||
|
self.idx += batch_size
|
||
|
return res
|
||
|
|
||
|
def remaining(self) -> int:
|
||
|
return max(0, self.arr.shape[0] - self.idx)
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def open_npz_array(path: str, arr_name: str) -> NpzArrayReader:
|
||
|
with _open_npy_file(path, arr_name) as arr_f:
|
||
|
version = np.lib.format.read_magic(arr_f)
|
||
|
if version == (1, 0):
|
||
|
header = np.lib.format.read_array_header_1_0(arr_f)
|
||
|
elif version == (2, 0):
|
||
|
header = np.lib.format.read_array_header_2_0(arr_f)
|
||
|
else:
|
||
|
yield MemoryNpzArrayReader.load(path, arr_name)
|
||
|
return
|
||
|
shape, fortran, dtype = header
|
||
|
if fortran or dtype.hasobject:
|
||
|
yield MemoryNpzArrayReader.load(path, arr_name)
|
||
|
else:
|
||
|
yield StreamingNpzArrayReader(arr_f, shape, dtype)
|
||
|
|
||
|
|
||
|
def _read_bytes(fp, size, error_template="ran out of data"):
|
||
|
"""
|
||
|
Copied from: https://github.com/numpy/numpy/blob/fb215c76967739268de71aa4bda55dd1b062bc2e/numpy/lib/format.py#L788-L886
|
||
|
|
||
|
Read from file-like object until size bytes are read.
|
||
|
Raises ValueError if not EOF is encountered before size bytes are read.
|
||
|
Non-blocking objects only supported if they derive from io objects.
|
||
|
Required as e.g. ZipExtFile in python 2.6 can return less data than
|
||
|
requested.
|
||
|
"""
|
||
|
data = bytes()
|
||
|
while True:
|
||
|
# io files (default in python3) return None or raise on
|
||
|
# would-block, python2 file will truncate, probably nothing can be
|
||
|
# done about that. note that regular files can't be non-blocking
|
||
|
try:
|
||
|
r = fp.read(size - len(data))
|
||
|
data += r
|
||
|
if len(r) == 0 or len(data) == size:
|
||
|
break
|
||
|
except io.BlockingIOError:
|
||
|
pass
|
||
|
if len(data) != size:
|
||
|
msg = "EOF: reading %s, expected %d bytes got %d"
|
||
|
raise ValueError(msg % (error_template, size, len(data)))
|
||
|
else:
|
||
|
return data
|
||
|
|
||
|
|
||
|
@contextmanager
|
||
|
def _open_npy_file(path: str, arr_name: str):
|
||
|
with open(path, "rb") as f:
|
||
|
with zipfile.ZipFile(f, "r") as zip_f:
|
||
|
if f"{arr_name}.npy" not in zip_f.namelist():
|
||
|
raise ValueError(f"missing {arr_name} in npz file")
|
||
|
with zip_f.open(f"{arr_name}.npy", "r") as arr_f:
|
||
|
yield arr_f
|
||
|
|
||
|
|
||
|
def _download_inception_model():
|
||
|
if os.path.exists(INCEPTION_V3_PATH):
|
||
|
return
|
||
|
print("downloading InceptionV3 model...")
|
||
|
with requests.get(INCEPTION_V3_URL, stream=True) as r:
|
||
|
r.raise_for_status()
|
||
|
tmp_path = INCEPTION_V3_PATH + ".tmp"
|
||
|
with open(tmp_path, "wb") as f:
|
||
|
for chunk in tqdm(r.iter_content(chunk_size=8192)):
|
||
|
f.write(chunk)
|
||
|
os.rename(tmp_path, INCEPTION_V3_PATH)
|
||
|
|
||
|
|
||
|
def _create_feature_graph(input_batch):
|
||
|
_download_inception_model()
|
||
|
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
||
|
with open(INCEPTION_V3_PATH, "rb") as f:
|
||
|
graph_def = tf.GraphDef()
|
||
|
graph_def.ParseFromString(f.read())
|
||
|
pool3, spatial = tf.import_graph_def(
|
||
|
graph_def,
|
||
|
input_map={f"ExpandDims:0": input_batch},
|
||
|
return_elements=[FID_POOL_NAME, FID_SPATIAL_NAME],
|
||
|
name=prefix,
|
||
|
)
|
||
|
_update_shapes(pool3)
|
||
|
spatial = spatial[..., :7]
|
||
|
return pool3, spatial
|
||
|
|
||
|
|
||
|
def _create_softmax_graph(input_batch):
|
||
|
_download_inception_model()
|
||
|
prefix = f"{random.randrange(2**32)}_{random.randrange(2**32)}"
|
||
|
with open(INCEPTION_V3_PATH, "rb") as f:
|
||
|
graph_def = tf.GraphDef()
|
||
|
graph_def.ParseFromString(f.read())
|
||
|
(matmul,) = tf.import_graph_def(
|
||
|
graph_def, return_elements=[f"softmax/logits/MatMul"], name=prefix
|
||
|
)
|
||
|
w = matmul.inputs[1]
|
||
|
logits = tf.matmul(input_batch, w)
|
||
|
return tf.nn.softmax(logits)
|
||
|
|
||
|
|
||
|
def _update_shapes(pool3):
|
||
|
# https://github.com/bioinf-jku/TTUR/blob/73ab375cdf952a12686d9aa7978567771084da42/fid.py#L50-L63
|
||
|
ops = pool3.graph.get_operations()
|
||
|
for op in ops:
|
||
|
for o in op.outputs:
|
||
|
shape = o.get_shape()
|
||
|
if shape._dims is not None: # pylint: disable=protected-access
|
||
|
# shape = [s.value for s in shape] TF 1.x
|
||
|
shape = [s for s in shape] # TF 2.x
|
||
|
new_shape = []
|
||
|
for j, s in enumerate(shape):
|
||
|
if s == 1 and j == 0:
|
||
|
new_shape.append(None)
|
||
|
else:
|
||
|
new_shape.append(s)
|
||
|
o.__dict__["_shape_val"] = tf.TensorShape(new_shape)
|
||
|
return pool3
|
||
|
|
||
|
|
||
|
def _numpy_partition(arr, kth, **kwargs):
|
||
|
num_workers = min(cpu_count(), len(arr))
|
||
|
chunk_size = len(arr) // num_workers
|
||
|
extra = len(arr) % num_workers
|
||
|
|
||
|
start_idx = 0
|
||
|
batches = []
|
||
|
for i in range(num_workers):
|
||
|
size = chunk_size + (1 if i < extra else 0)
|
||
|
batches.append(arr[start_idx : start_idx + size])
|
||
|
start_idx += size
|
||
|
|
||
|
with ThreadPool(num_workers) as pool:
|
||
|
return list(pool.map(partial(np.partition, kth=kth, **kwargs), batches))
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
print(REQUIREMENTS)
|
||
|
main()
|