132 lines
4.6 KiB
Python
132 lines
4.6 KiB
Python
|
import torch
|
||
|
import torch.nn as nn
|
||
|
from functools import partial
|
||
|
|
||
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
||
|
|
||
|
|
||
|
class AbstractEncoder(nn.Module):
|
||
|
def __init__(self):
|
||
|
super().__init__()
|
||
|
|
||
|
def encode(self, *args, **kwargs):
|
||
|
raise NotImplementedError
|
||
|
|
||
|
|
||
|
|
||
|
class ClassEmbedder(nn.Module):
|
||
|
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
||
|
super().__init__()
|
||
|
self.key = key
|
||
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
||
|
|
||
|
def forward(self, batch, key=None):
|
||
|
if key is None:
|
||
|
key = self.key
|
||
|
# this is for use in crossattn
|
||
|
c = batch[key][:, None]
|
||
|
c = self.embedding(c)
|
||
|
return c
|
||
|
|
||
|
|
||
|
class TransformerEmbedder(AbstractEncoder):
|
||
|
"""Some transformer encoder layers"""
|
||
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
||
|
super().__init__()
|
||
|
self.device = device
|
||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
||
|
|
||
|
def forward(self, tokens):
|
||
|
tokens = tokens.to(self.device) # meh
|
||
|
z = self.transformer(tokens, return_embeddings=True)
|
||
|
return z
|
||
|
|
||
|
def encode(self, x):
|
||
|
return self(x)
|
||
|
|
||
|
|
||
|
class BERTTokenizer(AbstractEncoder):
|
||
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
||
|
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
||
|
super().__init__()
|
||
|
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
||
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
||
|
self.device = device
|
||
|
self.vq_interface = vq_interface
|
||
|
self.max_length = max_length
|
||
|
|
||
|
def forward(self, text):
|
||
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
||
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
||
|
tokens = batch_encoding["input_ids"].to(self.device)
|
||
|
return tokens
|
||
|
|
||
|
@torch.no_grad()
|
||
|
def encode(self, text):
|
||
|
tokens = self(text)
|
||
|
if not self.vq_interface:
|
||
|
return tokens
|
||
|
return None, None, [None, None, tokens]
|
||
|
|
||
|
def decode(self, text):
|
||
|
return text
|
||
|
|
||
|
|
||
|
class BERTEmbedder(AbstractEncoder):
|
||
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
||
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
||
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
||
|
super().__init__()
|
||
|
self.use_tknz_fn = use_tokenizer
|
||
|
if self.use_tknz_fn:
|
||
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
||
|
self.device = device
|
||
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
||
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
||
|
emb_dropout=embedding_dropout)
|
||
|
|
||
|
def forward(self, text):
|
||
|
if self.use_tknz_fn:
|
||
|
tokens = self.tknz_fn(text)#.to(self.device)
|
||
|
else:
|
||
|
tokens = text
|
||
|
z = self.transformer(tokens, return_embeddings=True)
|
||
|
return z
|
||
|
|
||
|
def encode(self, text):
|
||
|
# output of length 77
|
||
|
return self(text)
|
||
|
|
||
|
|
||
|
class SpatialRescaler(nn.Module):
|
||
|
def __init__(self,
|
||
|
n_stages=1,
|
||
|
method='bilinear',
|
||
|
multiplier=0.5,
|
||
|
in_channels=3,
|
||
|
out_channels=None,
|
||
|
bias=False):
|
||
|
super().__init__()
|
||
|
self.n_stages = n_stages
|
||
|
assert self.n_stages >= 0
|
||
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
||
|
self.multiplier = multiplier
|
||
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
||
|
self.remap_output = out_channels is not None
|
||
|
if self.remap_output:
|
||
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
||
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
||
|
|
||
|
def forward(self,x):
|
||
|
for stage in range(self.n_stages):
|
||
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
||
|
|
||
|
|
||
|
if self.remap_output:
|
||
|
x = self.channel_mapper(x)
|
||
|
return x
|
||
|
|
||
|
def encode(self, x):
|
||
|
return self(x)
|