262 lines
9.1 KiB
Python
262 lines
9.1 KiB
Python
|
# adopted from
|
||
|
# https://github.com/openai/improved-diffusion/blob/main/improved_diffusion/gaussian_diffusion.py
|
||
|
# and
|
||
|
# https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
||
|
# and
|
||
|
# https://github.com/openai/guided-diffusion/blob/0ba878e517b276c45d1195eb29f6f5f72659a05b/guided_diffusion/nn.py
|
||
|
#
|
||
|
# thanks!
|
||
|
|
||
|
|
||
|
import os
|
||
|
import math
|
||
|
import torch
|
||
|
import torch.nn as nn
|
||
|
import numpy as np
|
||
|
from einops import repeat
|
||
|
|
||
|
from ldm.util import instantiate_from_config
|
||
|
|
||
|
|
||
|
def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||
|
if schedule == "linear":
|
||
|
betas = (
|
||
|
torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2
|
||
|
)
|
||
|
|
||
|
elif schedule == "cosine":
|
||
|
timesteps = (
|
||
|
torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s
|
||
|
)
|
||
|
alphas = timesteps / (1 + cosine_s) * np.pi / 2
|
||
|
alphas = torch.cos(alphas).pow(2)
|
||
|
alphas = alphas / alphas[0]
|
||
|
betas = 1 - alphas[1:] / alphas[:-1]
|
||
|
betas = np.clip(betas, a_min=0, a_max=0.999)
|
||
|
|
||
|
elif schedule == "sqrt_linear":
|
||
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64)
|
||
|
elif schedule == "sqrt":
|
||
|
betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5
|
||
|
else:
|
||
|
raise ValueError(f"schedule '{schedule}' unknown.")
|
||
|
return betas.numpy()
|
||
|
|
||
|
|
||
|
def make_ddim_timesteps(ddim_discr_method, num_ddim_timesteps, num_ddpm_timesteps, verbose=True):
|
||
|
if ddim_discr_method == 'uniform':
|
||
|
c = num_ddpm_timesteps // num_ddim_timesteps
|
||
|
ddim_timesteps = np.asarray(list(range(0, num_ddpm_timesteps, c)))
|
||
|
elif ddim_discr_method == 'quad':
|
||
|
ddim_timesteps = ((np.linspace(0, np.sqrt(num_ddpm_timesteps * .8), num_ddim_timesteps)) ** 2).astype(int)
|
||
|
else:
|
||
|
raise NotImplementedError(f'There is no ddim discretization method called "{ddim_discr_method}"')
|
||
|
|
||
|
# assert ddim_timesteps.shape[0] == num_ddim_timesteps
|
||
|
# add one to get the final alpha values right (the ones from first scale to data during sampling)
|
||
|
steps_out = ddim_timesteps + 1
|
||
|
if verbose:
|
||
|
print(f'Selected timesteps for ddim sampler: {steps_out}')
|
||
|
return steps_out
|
||
|
|
||
|
|
||
|
def make_ddim_sampling_parameters(alphacums, ddim_timesteps, eta, verbose=True):
|
||
|
# select alphas for computing the variance schedule
|
||
|
alphas = alphacums[ddim_timesteps]
|
||
|
alphas_prev = np.asarray([alphacums[0]] + alphacums[ddim_timesteps[:-1]].tolist())
|
||
|
|
||
|
# according the the formula provided in https://arxiv.org/abs/2010.02502
|
||
|
sigmas = eta * np.sqrt((1 - alphas_prev) / (1 - alphas) * (1 - alphas / alphas_prev))
|
||
|
if verbose:
|
||
|
print(f'Selected alphas for ddim sampler: a_t: {alphas}; a_(t-1): {alphas_prev}')
|
||
|
print(f'For the chosen value of eta, which is {eta}, '
|
||
|
f'this results in the following sigma_t schedule for ddim sampler {sigmas}')
|
||
|
return sigmas, alphas, alphas_prev
|
||
|
|
||
|
|
||
|
def betas_for_alpha_bar(num_diffusion_timesteps, alpha_bar, max_beta=0.999):
|
||
|
"""
|
||
|
Create a beta schedule that discretizes the given alpha_t_bar function,
|
||
|
which defines the cumulative product of (1-beta) over time from t = [0,1].
|
||
|
:param num_diffusion_timesteps: the number of betas to produce.
|
||
|
:param alpha_bar: a lambda that takes an argument t from 0 to 1 and
|
||
|
produces the cumulative product of (1-beta) up to that
|
||
|
part of the diffusion process.
|
||
|
:param max_beta: the maximum beta to use; use values lower than 1 to
|
||
|
prevent singularities.
|
||
|
"""
|
||
|
betas = []
|
||
|
for i in range(num_diffusion_timesteps):
|
||
|
t1 = i / num_diffusion_timesteps
|
||
|
t2 = (i + 1) / num_diffusion_timesteps
|
||
|
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
|
||
|
return np.array(betas)
|
||
|
|
||
|
|
||
|
def extract_into_tensor(a, t, x_shape):
|
||
|
b, *_ = t.shape
|
||
|
out = a.gather(-1, t)
|
||
|
return out.reshape(b, *((1,) * (len(x_shape) - 1)))
|
||
|
|
||
|
|
||
|
def checkpoint(func, inputs, params, flag):
|
||
|
"""
|
||
|
Evaluate a function without caching intermediate activations, allowing for
|
||
|
reduced memory at the expense of extra compute in the backward pass.
|
||
|
:param func: the function to evaluate.
|
||
|
:param inputs: the argument sequence to pass to `func`.
|
||
|
:param params: a sequence of parameters `func` depends on but does not
|
||
|
explicitly take as arguments.
|
||
|
:param flag: if False, disable gradient checkpointing.
|
||
|
"""
|
||
|
if flag:
|
||
|
args = tuple(inputs) + tuple(params)
|
||
|
return CheckpointFunction.apply(func, len(inputs), *args)
|
||
|
else:
|
||
|
return func(*inputs)
|
||
|
|
||
|
|
||
|
class CheckpointFunction(torch.autograd.Function):
|
||
|
@staticmethod
|
||
|
def forward(ctx, run_function, length, *args):
|
||
|
ctx.run_function = run_function
|
||
|
ctx.input_tensors = list(args[:length])
|
||
|
ctx.input_params = list(args[length:])
|
||
|
|
||
|
with torch.no_grad():
|
||
|
output_tensors = ctx.run_function(*ctx.input_tensors)
|
||
|
return output_tensors
|
||
|
|
||
|
@staticmethod
|
||
|
def backward(ctx, *output_grads):
|
||
|
ctx.input_tensors = [x.detach().requires_grad_(True) for x in ctx.input_tensors]
|
||
|
with torch.enable_grad():
|
||
|
# Fixes a bug where the first op in run_function modifies the
|
||
|
# Tensor storage in place, which is not allowed for detach()'d
|
||
|
# Tensors.
|
||
|
shallow_copies = [x.view_as(x) for x in ctx.input_tensors]
|
||
|
output_tensors = ctx.run_function(*shallow_copies)
|
||
|
input_grads = torch.autograd.grad(
|
||
|
output_tensors,
|
||
|
ctx.input_tensors + ctx.input_params,
|
||
|
output_grads,
|
||
|
allow_unused=True,
|
||
|
)
|
||
|
del ctx.input_tensors
|
||
|
del ctx.input_params
|
||
|
del output_tensors
|
||
|
return (None, None) + input_grads
|
||
|
|
||
|
|
||
|
def timestep_embedding(timesteps, dim, max_period=10000, repeat_only=False):
|
||
|
"""
|
||
|
Create sinusoidal timestep embeddings.
|
||
|
:param timesteps: a 1-D Tensor of N indices, one per batch element.
|
||
|
These may be fractional.
|
||
|
:param dim: the dimension of the output.
|
||
|
:param max_period: controls the minimum frequency of the embeddings.
|
||
|
:return: an [N x dim] Tensor of positional embeddings.
|
||
|
"""
|
||
|
if not repeat_only:
|
||
|
half = dim // 2
|
||
|
freqs = torch.exp(
|
||
|
-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
|
||
|
).to(device=timesteps.device)
|
||
|
args = timesteps[:, None].float() * freqs[None]
|
||
|
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||
|
if dim % 2:
|
||
|
embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
|
||
|
else:
|
||
|
embedding = repeat(timesteps, 'b -> b d', d=dim)
|
||
|
return embedding
|
||
|
|
||
|
|
||
|
def zero_module(module):
|
||
|
"""
|
||
|
Zero out the parameters of a module and return it.
|
||
|
"""
|
||
|
for p in module.parameters():
|
||
|
p.detach().zero_()
|
||
|
return module
|
||
|
|
||
|
|
||
|
def scale_module(module, scale):
|
||
|
"""
|
||
|
Scale the parameters of a module and return it.
|
||
|
"""
|
||
|
for p in module.parameters():
|
||
|
p.detach().mul_(scale)
|
||
|
return module
|
||
|
|
||
|
|
||
|
def mean_flat(tensor):
|
||
|
"""
|
||
|
Take the mean over all non-batch dimensions.
|
||
|
"""
|
||
|
return tensor.mean(dim=list(range(1, len(tensor.shape))))
|
||
|
|
||
|
|
||
|
def normalization(channels):
|
||
|
"""
|
||
|
Make a standard normalization layer.
|
||
|
:param channels: number of input channels.
|
||
|
:return: an nn.Module for normalization.
|
||
|
"""
|
||
|
return GroupNorm32(32, channels)
|
||
|
|
||
|
|
||
|
# PyTorch 1.7 has SiLU, but we support PyTorch 1.5.
|
||
|
class SiLU(nn.Module):
|
||
|
def forward(self, x):
|
||
|
return x * torch.sigmoid(x)
|
||
|
|
||
|
|
||
|
class GroupNorm32(nn.GroupNorm):
|
||
|
def forward(self, x):
|
||
|
return super().forward(x.float()).type(x.dtype)
|
||
|
|
||
|
def conv_nd(dims, *args, **kwargs):
|
||
|
"""
|
||
|
Create a 1D, 2D, or 3D convolution module.
|
||
|
"""
|
||
|
if dims == 1:
|
||
|
return nn.Conv1d(*args, **kwargs)
|
||
|
elif dims == 2:
|
||
|
return nn.Conv2d(*args, **kwargs)
|
||
|
elif dims == 3:
|
||
|
return nn.Conv3d(*args, **kwargs)
|
||
|
raise ValueError(f"unsupported dimensions: {dims}")
|
||
|
|
||
|
|
||
|
def linear(*args, **kwargs):
|
||
|
"""
|
||
|
Create a linear module.
|
||
|
"""
|
||
|
return nn.Linear(*args, **kwargs)
|
||
|
|
||
|
|
||
|
def avg_pool_nd(dims, *args, **kwargs):
|
||
|
"""
|
||
|
Create a 1D, 2D, or 3D average pooling module.
|
||
|
"""
|
||
|
if dims == 1:
|
||
|
return nn.AvgPool1d(*args, **kwargs)
|
||
|
elif dims == 2:
|
||
|
return nn.AvgPool2d(*args, **kwargs)
|
||
|
elif dims == 3:
|
||
|
return nn.AvgPool3d(*args, **kwargs)
|
||
|
raise ValueError(f"unsupported dimensions: {dims}")
|
||
|
|
||
|
|
||
|
class HybridConditioner(nn.Module):
|
||
|
|
||
|
def __init__(self, c_concat_config, c_crossattn_config):
|
||
|
super().__init__()
|
||
|
self.concat_conditioner = instantiate_from_config(c_concat_config)
|
||
|
self.crossattn_conditioner = instantiate_from_config(c_crossattn_config)
|
||
|
|
||
|
def forward(self, c_concat, c_crossattn):
|
||
|
c_concat = self.concat_conditioner(c_concat)
|
||
|
c_crossattn = self.crossattn_conditioner(c_crossattn)
|
||
|
return {'c_concat': [c_concat], 'c_crossattn': [c_crossattn]}
|