2022-07-12 21:41:58 +00:00
|
|
|
import os
|
|
|
|
import glob
|
|
|
|
import subprocess
|
|
|
|
import time
|
|
|
|
import fire
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from tqdm import tqdm
|
|
|
|
import torch
|
|
|
|
from pytorch_lightning import seed_everything
|
|
|
|
from omegaconf import OmegaConf
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
|
from einops import rearrange
|
|
|
|
from torchvision.utils import make_grid
|
|
|
|
from PIL import Image
|
|
|
|
import contextlib
|
|
|
|
|
|
|
|
|
|
|
|
def load_model_from_config(config, ckpt, verbose=False):
|
|
|
|
pl_sd = torch.load(ckpt, map_location="cpu")
|
|
|
|
gs = pl_sd["global_step"]
|
|
|
|
sd = pl_sd["state_dict"]
|
|
|
|
model = instantiate_from_config(config.model)
|
|
|
|
m, u = model.load_state_dict(sd, strict=True)
|
|
|
|
model.cuda()
|
|
|
|
model.eval()
|
|
|
|
return model, gs
|
|
|
|
|
|
|
|
|
|
|
|
def read_prompts(path):
|
|
|
|
with open(path, "r") as f:
|
|
|
|
prompts = f.read().splitlines()
|
|
|
|
return prompts
|
|
|
|
|
|
|
|
|
|
|
|
def split_in_batches(iterator, n):
|
|
|
|
out = []
|
|
|
|
for elem in iterator:
|
|
|
|
out.append(elem)
|
|
|
|
if len(out) == n:
|
|
|
|
yield out
|
|
|
|
out = []
|
|
|
|
if len(out) > 0:
|
|
|
|
yield out
|
|
|
|
|
|
|
|
|
|
|
|
class Sampler(object):
|
|
|
|
def __init__(self, out_dir, ckpt_path, cfg_path, prompts_path, shape, seed=42):
|
|
|
|
self.out_dir = out_dir
|
|
|
|
self.ckpt_path = ckpt_path
|
|
|
|
self.cfg_path = cfg_path
|
|
|
|
self.prompts_path = prompts_path
|
|
|
|
self.seed = seed
|
|
|
|
|
|
|
|
self.batch_size = 1
|
|
|
|
self.scale = 10
|
|
|
|
self.shape = shape
|
|
|
|
self.n_steps = 100
|
|
|
|
self.nrow = 8
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
def sample(self, model, prompts, ema=True):
|
|
|
|
seed = self.seed
|
|
|
|
batch_size = self.batch_size
|
|
|
|
scale = self.scale
|
|
|
|
n_steps = self.n_steps
|
|
|
|
|
|
|
|
shape = self.shape
|
|
|
|
|
|
|
|
print("Sampling model.")
|
|
|
|
print("ckpt_path", self.ckpt_path)
|
|
|
|
print("cfg_path", self.cfg_path)
|
|
|
|
print("prompts_path", self.prompts_path)
|
|
|
|
print("out_dir", self.out_dir)
|
|
|
|
print("seed", self.seed)
|
|
|
|
print("batch_size", batch_size)
|
|
|
|
print("scale", scale)
|
|
|
|
print("n_steps", n_steps)
|
|
|
|
print("shape", shape)
|
|
|
|
|
|
|
|
prompts = list(split_in_batches(prompts, batch_size))
|
|
|
|
|
|
|
|
sampler = PLMSSampler(model)
|
|
|
|
all_samples = list()
|
|
|
|
|
|
|
|
ctxt = model.ema_scope if ema else contextlib.nullcontext
|
|
|
|
|
|
|
|
with ctxt():
|
|
|
|
for prompts_batch in tqdm(prompts, desc="prompts"):
|
|
|
|
uc = None
|
|
|
|
if scale != 1.0:
|
|
|
|
uc = model.get_learned_conditioning(batch_size * [""])
|
|
|
|
c = model.get_learned_conditioning(prompts_batch)
|
|
|
|
|
|
|
|
seed_everything(seed)
|
|
|
|
|
|
|
|
samples_latent, _ = sampler.sample(
|
|
|
|
S=n_steps,
|
|
|
|
conditioning=c,
|
|
|
|
batch_size=batch_size,
|
|
|
|
shape=shape,
|
|
|
|
verbose=False,
|
|
|
|
unconditional_guidance_scale=scale,
|
|
|
|
unconditional_conditioning=uc,
|
|
|
|
eta=0.0,
|
|
|
|
dynamic_threshold=None,
|
|
|
|
)
|
|
|
|
|
|
|
|
samples = model.decode_first_stage(samples_latent)
|
|
|
|
samples = torch.clamp((samples+1.0)/2.0, min=0.0, max=1.0)
|
|
|
|
|
|
|
|
all_samples.append(samples)
|
|
|
|
|
|
|
|
all_samples = torch.cat(all_samples, 0)
|
|
|
|
return all_samples
|
|
|
|
|
|
|
|
|
|
|
|
@torch.inference_mode()
|
|
|
|
def __call__(self):
|
|
|
|
config = OmegaConf.load(self.cfg_path)
|
|
|
|
model, global_step = load_model_from_config(config, self.ckpt_path)
|
|
|
|
print(f"Restored model at global step {global_step}.")
|
|
|
|
|
|
|
|
prompts = read_prompts(self.prompts_path)
|
|
|
|
|
|
|
|
all_samples = self.sample(model, prompts, ema=True)
|
|
|
|
self.save_as_grid("grid_with_wings", all_samples, global_step)
|
|
|
|
all_samples = self.sample(model, prompts, ema=False)
|
|
|
|
self.save_as_grid("grid_without_wings", all_samples, global_step)
|
|
|
|
|
|
|
|
|
|
|
|
def save_as_grid(self, name, grid, global_step):
|
|
|
|
grid = make_grid(grid, nrow=self.nrow)
|
|
|
|
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
|
|
|
|
|
|
|
|
os.makedirs(self.out_dir, exist_ok=True)
|
|
|
|
filename = "{}_gs-{:06}_e-{:06}_b-{:06}.png".format(
|
|
|
|
name,
|
|
|
|
global_step,
|
|
|
|
0,
|
|
|
|
0,
|
|
|
|
)
|
|
|
|
grid_path = os.path.join(self.out_dir, filename)
|
|
|
|
Image.fromarray(grid.astype(np.uint8)).save(grid_path)
|
|
|
|
print(f"---> {grid_path}")
|
|
|
|
|
|
|
|
|
|
|
|
class Checker(object):
|
2022-07-13 07:29:43 +00:00
|
|
|
def __init__(self, ckpt_path, callback, wait_for_file=5, interval=60):
|
2022-07-12 21:41:58 +00:00
|
|
|
self._cached_stamp = 0
|
|
|
|
self.filename = ckpt_path
|
|
|
|
self.callback = callback
|
|
|
|
self.interval = interval
|
2022-07-13 07:29:43 +00:00
|
|
|
self.wait_for_file = wait_for_file
|
2022-07-12 21:41:58 +00:00
|
|
|
|
|
|
|
def check(self):
|
|
|
|
while True:
|
2022-07-26 08:23:46 +00:00
|
|
|
if not os.path.exists(self.filename):
|
|
|
|
print(f"Could not find {self.filename}. Waiting.")
|
|
|
|
time.sleep(self.interval)
|
|
|
|
continue
|
|
|
|
|
2022-07-12 21:41:58 +00:00
|
|
|
stamp = os.stat(self.filename).st_mtime
|
|
|
|
if stamp != self._cached_stamp:
|
2022-07-13 07:29:43 +00:00
|
|
|
while True:
|
|
|
|
# try to wait until checkpoint is fully written
|
|
|
|
previous_stamp = stamp
|
|
|
|
time.sleep(self.wait_for_file)
|
|
|
|
stamp = os.stat(self.filename).st_mtime
|
|
|
|
if stamp != previous_stamp:
|
|
|
|
print(f"File is still changing. Waiting {self.wait_for_file} seconds.")
|
|
|
|
else:
|
|
|
|
break
|
|
|
|
|
2022-07-12 21:41:58 +00:00
|
|
|
self._cached_stamp = stamp
|
|
|
|
# file has changed, so do something...
|
|
|
|
print(f"{self.__class__.__name__}: Detected a new file at "
|
|
|
|
f"{self.filename}, calling back.")
|
|
|
|
self.callback()
|
2022-07-13 07:29:43 +00:00
|
|
|
|
2022-07-12 21:41:58 +00:00
|
|
|
else:
|
|
|
|
time.sleep(self.interval)
|
|
|
|
|
|
|
|
|
|
|
|
def run(prompts_path="scripts/prompts/prompts-with-wings.txt",
|
|
|
|
watch_log_dir=None, out_dir=None, ckpt_path=None, cfg_path=None,
|
|
|
|
H=256,
|
|
|
|
W=None,
|
|
|
|
C=4,
|
|
|
|
F=8,
|
2022-07-13 07:29:43 +00:00
|
|
|
wait_for_file=5,
|
2022-07-12 21:41:58 +00:00
|
|
|
interval=60):
|
|
|
|
|
|
|
|
if out_dir is None:
|
|
|
|
assert watch_log_dir is not None
|
|
|
|
out_dir = os.path.join(watch_log_dir, "images/checker")
|
|
|
|
|
|
|
|
if ckpt_path is None:
|
|
|
|
assert watch_log_dir is not None
|
|
|
|
ckpt_path = os.path.join(watch_log_dir, "checkpoints/last.ckpt")
|
|
|
|
|
|
|
|
if cfg_path is None:
|
|
|
|
assert watch_log_dir is not None
|
|
|
|
configs = glob.glob(os.path.join(watch_log_dir, "configs/*-project.yaml"))
|
|
|
|
cfg_path = sorted(configs)[-1]
|
|
|
|
|
|
|
|
if W is None:
|
|
|
|
assert H is not None
|
|
|
|
W = H
|
|
|
|
if H is None:
|
|
|
|
assert W is not None
|
|
|
|
H = W
|
|
|
|
shape = [C, H//F, W//F]
|
|
|
|
sampler = Sampler(out_dir, ckpt_path, cfg_path, prompts_path, shape=shape)
|
|
|
|
|
2022-07-13 07:29:43 +00:00
|
|
|
checker = Checker(ckpt_path, sampler, wait_for_file=wait_for_file, interval=interval)
|
2022-07-12 21:41:58 +00:00
|
|
|
checker.check()
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
fire.Fire(run)
|