stable-diffusion-finetune/configs/stable-diffusion/dev_mn.yaml

129 lines
3.2 KiB
YAML
Raw Normal View History

2022-05-30 14:42:07 +02:00
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 32
channels: 4
cond_stage_trainable: true
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32
in_channels: 4
out_channels: 4
model_channels: 32 # 320 # TODO increase
attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
num_res_blocks: 2
channel_mult: [ 1, ]
#num_head_channels: 32
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 32
use_checkpoint: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.BERTEmbedder
params:
n_embed: 32
n_layer: 1 #32 # TODO: increase
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
2022-05-30 15:48:04 +02:00
batch_size: 4
2022-05-30 14:42:07 +02:00
num_workers: 4
2022-05-30 15:48:04 +02:00
n_nodes: 4
2022-05-30 14:42:07 +02:00
train:
2022-05-30 22:34:17 +02:00
shards: '{000000..231339}.tar -'
shuffle: 10000
2022-05-30 14:42:07 +02:00
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 256
2022-05-31 00:16:58 +02:00
# NOTE use enough shards to avoid empty validation loops in workers
2022-05-30 14:42:07 +02:00
validation:
2022-05-31 00:16:58 +02:00
shards: '{231346..231349}.tar -'
2022-05-30 22:34:17 +02:00
shuffle: 0
2022-05-30 14:42:07 +02:00
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 256
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
2022-05-31 00:16:58 +02:00
batch_frequency: 500 # 5000
max_images: 8
2022-05-30 14:42:07 +02:00
increase_log_steps: False
2022-05-31 00:16:58 +02:00
log_first_step: False
2022-05-30 14:42:07 +02:00
trainer:
2022-05-30 15:48:04 +02:00
#replace_sampler_ddp: False
2022-05-30 14:42:07 +02:00
benchmark: True
2022-05-31 00:16:58 +02:00
val_check_interval: 1000 # every 20k training steps
2022-05-30 14:42:07 +02:00
num_sanity_val_steps: 0