stable-diffusion-finetune/scripts/txt2img.py

286 lines
8.8 KiB
Python
Raw Normal View History

2022-04-04 14:17:48 +00:00
import argparse, os, sys, glob
import torch
import numpy as np
from omegaconf import OmegaConf
from PIL import Image
from tqdm import tqdm, trange
2022-06-05 17:22:43 +00:00
from itertools import islice
2022-04-04 14:17:48 +00:00
from einops import rearrange
from torchvision.utils import make_grid
2022-06-16 15:12:54 +00:00
import time
2022-06-29 21:39:55 +00:00
from pytorch_lightning import seed_everything
2022-07-29 19:34:02 +00:00
from torch import autocast
from contextlib import contextmanager, nullcontext
2022-04-04 14:17:48 +00:00
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
2022-04-04 21:43:15 +00:00
from ldm.models.diffusion.plms import PLMSSampler
2022-04-04 14:17:48 +00:00
2022-06-05 17:22:43 +00:00
def chunk(it, size):
it = iter(it)
return iter(lambda: tuple(islice(it, size)), ())
2022-04-04 14:17:48 +00:00
def load_model_from_config(config, ckpt, verbose=False):
print(f"Loading model from {ckpt}")
pl_sd = torch.load(ckpt, map_location="cpu")
if "global_step" in pl_sd:
print(f"Global Step: {pl_sd['global_step']}")
2022-04-04 14:17:48 +00:00
sd = pl_sd["state_dict"]
model = instantiate_from_config(config.model)
m, u = model.load_state_dict(sd, strict=False)
if len(m) > 0 and verbose:
print("missing keys:")
print(m)
if len(u) > 0 and verbose:
print("unexpected keys:")
print(u)
model.cuda()
model.eval()
return model
2022-07-14 21:29:46 +00:00
def main():
2022-04-04 14:17:48 +00:00
parser = argparse.ArgumentParser()
parser.add_argument(
"--prompt",
type=str,
nargs="?",
default="a painting of a virus monster playing guitar",
help="the prompt to render"
)
parser.add_argument(
"--outdir",
type=str,
nargs="?",
help="dir to write results to",
default="outputs/txt2img-samples"
)
2022-06-10 08:54:14 +00:00
parser.add_argument(
"--skip_grid",
action='store_true',
help="do not save a grid, only individual samples. Helpful when evaluating lots of samples",
)
2022-06-16 15:12:54 +00:00
parser.add_argument(
"--skip_save",
action='store_true',
help="do not save indiviual samples. For speed measurements.",
)
2022-04-04 14:17:48 +00:00
parser.add_argument(
"--ddim_steps",
type=int,
2022-06-05 17:22:43 +00:00
default=50,
2022-04-04 14:17:48 +00:00
help="number of ddim sampling steps",
)
2022-04-04 21:43:15 +00:00
parser.add_argument(
"--plms",
action='store_true',
help="use plms sampling",
)
2022-07-15 11:50:15 +00:00
parser.add_argument(
"--fixed_code",
action='store_true',
help="if enabled, uses the same starting code across all samples ",
)
2022-04-04 21:43:15 +00:00
2022-04-04 14:17:48 +00:00
parser.add_argument(
"--ddim_eta",
type=float,
default=0.0,
help="ddim eta (eta=0.0 corresponds to deterministic sampling",
)
parser.add_argument(
"--n_iter",
type=int,
default=1,
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=256,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=256,
help="image width, in pixel space",
)
2022-06-16 15:12:54 +00:00
parser.add_argument(
"--C",
type=int,
default=4,
help="latent channels",
)
parser.add_argument(
"--f",
type=int,
default=8,
help="downsampling factor, most often 8 or 16",
)
2022-04-04 14:17:48 +00:00
parser.add_argument(
"--n_samples",
type=int,
2022-06-05 17:22:43 +00:00
default=8,
help="how many samples to produce for each given prompt. A.k.a batch size",
2022-04-04 14:17:48 +00:00
)
parser.add_argument(
"--n_rows",
type=int,
default=0,
help="rows in the grid (default: n_samples)",
)
2022-04-04 14:17:48 +00:00
parser.add_argument(
"--scale",
type=float,
default=5.0,
help="unconditional guidance scale: eps = eps(x, empty) + scale * (eps(x, cond) - eps(x, empty))",
)
2022-06-05 17:22:43 +00:00
parser.add_argument(
"--dyn",
type=float,
help="dynamic thresholding from Imagen, in latent space (TODO: try in pixel space with intermediate decode)",
)
parser.add_argument(
"--from-file",
type=str,
help="if specified, load prompts from this file",
)
parser.add_argument(
"--config",
type=str,
default="logs/f8-kl-clip-encoder-256x256-run1/configs/2022-06-01T22-11-40-project.yaml",
help="path to config which constructs model",
)
parser.add_argument(
"--ckpt",
type=str,
default="logs/f8-kl-clip-encoder-256x256-run1/checkpoints/last.ckpt",
help="path to checkpoint of model",
)
2022-06-29 21:39:55 +00:00
parser.add_argument(
"--seed",
type=int,
default=42,
help="the seed (for reproducible sampling)",
)
2022-07-29 19:34:02 +00:00
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
2022-04-04 14:17:48 +00:00
opt = parser.parse_args()
2022-06-29 21:39:55 +00:00
seed_everything(opt.seed)
2022-04-04 14:17:48 +00:00
2022-06-05 17:22:43 +00:00
config = OmegaConf.load(f"{opt.config}")
model = load_model_from_config(config, f"{opt.ckpt}")
2022-04-04 14:17:48 +00:00
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = model.to(device)
2022-04-04 21:43:15 +00:00
if opt.plms:
sampler = PLMSSampler(model)
else:
sampler = DDIMSampler(model)
2022-04-04 14:17:48 +00:00
os.makedirs(opt.outdir, exist_ok=True)
outpath = opt.outdir
2022-06-05 17:22:43 +00:00
batch_size = opt.n_samples
n_rows = opt.n_rows if opt.n_rows > 0 else batch_size
2022-06-05 17:22:43 +00:00
if not opt.from_file:
prompt = opt.prompt
assert prompt is not None
data = [batch_size * [prompt]]
2022-04-04 14:17:48 +00:00
2022-06-05 17:22:43 +00:00
else:
print(f"reading prompts from {opt.from_file}")
with open(opt.from_file, "r") as f:
data = f.read().splitlines()
data = list(chunk(data, batch_size))
2022-04-04 14:17:48 +00:00
sample_path = os.path.join(outpath, "samples")
os.makedirs(sample_path, exist_ok=True)
base_count = len(os.listdir(sample_path))
2022-06-05 17:22:43 +00:00
grid_count = len(os.listdir(outpath)) - 1
2022-07-15 11:50:15 +00:00
start_code = None
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
2022-07-29 19:34:02 +00:00
precision_scope = autocast if opt.precision=="autocast" else nullcontext
2022-04-04 14:17:48 +00:00
with torch.no_grad():
2022-07-29 19:34:02 +00:00
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
for n in trange(opt.n_iter, desc="Sampling"):
for prompts in tqdm(data, desc="data"):
uc = None
if opt.scale != 1.0:
uc = model.get_learned_conditioning(batch_size * [""])
if isinstance(prompts, tuple):
prompts = list(prompts)
c = model.get_learned_conditioning(prompts)
shape = [opt.C, opt.H // opt.f, opt.W // opt.f]
samples_ddim, _ = sampler.sample(S=opt.ddim_steps,
conditioning=c,
batch_size=opt.n_samples,
shape=shape,
verbose=False,
unconditional_guidance_scale=opt.scale,
unconditional_conditioning=uc,
eta=opt.ddim_eta,
dynamic_threshold=opt.dyn,
x_T=start_code)
x_samples_ddim = model.decode_first_stage(samples_ddim)
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
if not opt.skip_save:
for x_sample in x_samples_ddim:
x_sample = 255. * rearrange(x_sample.cpu().numpy(), 'c h w -> h w c')
Image.fromarray(x_sample.astype(np.uint8)).save(
os.path.join(sample_path, f"{base_count:05}.png"))
base_count += 1
all_samples.append(x_samples_ddim)
if not opt.skip_grid:
# additionally, save as grid
grid = torch.stack(all_samples, 0)
grid = rearrange(grid, 'n b c h w -> (n b) c h w')
grid = make_grid(grid, nrow=n_rows)
# to image
grid = 255. * rearrange(grid, 'c h w -> h w c').cpu().numpy()
Image.fromarray(grid.astype(np.uint8)).save(os.path.join(outpath, f'grid-{grid_count:04}.png'))
grid_count += 1
toc = time.time()
2022-06-16 15:12:54 +00:00
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
2022-07-15 11:50:15 +00:00
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
2022-06-16 15:12:54 +00:00
f" \nEnjoy.")
2022-07-14 21:29:46 +00:00
if __name__ == "__main__":
main()