476 lines
12 KiB
JavaScript
476 lines
12 KiB
JavaScript
// console.log('p5 version:', p5);
|
|
// console.log('ml5 version:', ml5);
|
|
// console.log(location.origin);
|
|
|
|
let assets = {};
|
|
|
|
var draw = function () {
|
|
// Begin met het tekenen van de video
|
|
// plaats hem op position x = 0, y = 0.
|
|
// vul de hele breedte en hoogte
|
|
image(lastFrame, 0,0, width, height);
|
|
|
|
for(let detection of detections) {
|
|
push();
|
|
let transformed = transformDetection(detection);
|
|
|
|
translate(transformed.origin.x, transformed.origin.y);
|
|
rotate(transformed.angle);
|
|
|
|
try {
|
|
drawMask(transformed);
|
|
} catch (error) {
|
|
console.error(error);
|
|
}
|
|
|
|
pop();
|
|
}
|
|
};
|
|
|
|
var drawMask = function(detection) {
|
|
|
|
};
|
|
|
|
// var gotResults = function(err, result) {
|
|
// if (err) {
|
|
// console.log(err)
|
|
// return
|
|
// }
|
|
// };
|
|
|
|
// function code_error(type, error) {
|
|
// window.parent.postMessage({
|
|
// 'type': type,
|
|
// 'error': error.message,
|
|
// 'name': error.name,
|
|
// 'line': error.lineNumber - 2, // seems it giveswrong line numbers
|
|
// 'column': error.columnNumber
|
|
// }, '*');
|
|
|
|
// }
|
|
|
|
// function no_code_error(type){
|
|
// window.parent.postMessage({
|
|
// 'type': type,
|
|
// 'error': null
|
|
// }, '*');
|
|
// }
|
|
|
|
// window.addEventListener("message", function (e) {
|
|
// if (event.origin !== window.location.origin) {
|
|
// console.error("Invalid origin of message. Ignored");
|
|
// return;
|
|
// }
|
|
|
|
// console.debug("receive", e.data);
|
|
|
|
// switch (e.data.action) {
|
|
// case 'asset':
|
|
// if(e.data.content === null){
|
|
// delete assets[e.data.id];
|
|
// } else {
|
|
// assets[e.data.id] = loadImage(e.data.content);
|
|
// }
|
|
|
|
// break;
|
|
// case 'code':
|
|
// let f = new Function("");
|
|
// try {
|
|
// f = new Function(e.data.draw);
|
|
// no_code_error('syntax');
|
|
// } catch (error) {
|
|
// code_error('syntax', error);
|
|
// // window.parent.postMessage({'syntax': error.lineNumber});
|
|
// }
|
|
// handleResults = f;
|
|
// break;
|
|
|
|
// default:
|
|
// console.error("Invalid action", e.data.action);
|
|
// break;
|
|
// }
|
|
|
|
// });
|
|
|
|
|
|
let faceapi;
|
|
var video;
|
|
var lastFrame;
|
|
var frameToDetect;
|
|
var detections = [];
|
|
var factor_x, factor_y;
|
|
|
|
|
|
// function pause() {
|
|
// if (running)
|
|
// running = false;
|
|
// else {
|
|
// running = true;
|
|
// faceapi.detect(gotResults);
|
|
// }
|
|
// }
|
|
|
|
// by default all options are set to true
|
|
const detection_options = {
|
|
withLandmarks: true,
|
|
withDescriptors: false,
|
|
minConfidence: 0.5,
|
|
Mobilenetv1Model: window.parent.location.origin + '/assets/faceapi',
|
|
FaceLandmarkModel: window.parent.location.origin + '/assets/faceapi',
|
|
FaceLandmark68TinyNet: window.parent.location.origin + '/assets/faceapi',
|
|
FaceRecognitionModel: window.parent.location.origin + '/assets/faceapi',
|
|
TinyFaceDetectorModel: window.parent.location.origin + '/assets/faceapi',
|
|
}
|
|
|
|
function setupAssets(){
|
|
// placeholder. Override in patch...
|
|
}
|
|
|
|
let images = {};
|
|
function preload() {
|
|
const req = new Request('/assets/images.json');
|
|
fetch(req).then(
|
|
response => response.json()
|
|
).then(data => {
|
|
for(let id in data) {
|
|
images[id] = loadImage(data[id]);
|
|
}
|
|
// console.log('images', data, images);
|
|
});
|
|
// console.log(images);
|
|
}
|
|
|
|
function setup() {
|
|
// createCanvas(1280,720, WEBGL);
|
|
createCanvas(540,420);
|
|
smooth();
|
|
noFill();
|
|
|
|
|
|
push();
|
|
translate(-width/2, -height/2);
|
|
|
|
let constraints = {
|
|
video: {
|
|
width: { min: 720 },
|
|
height: { min: 540 }
|
|
},
|
|
audio: false
|
|
};
|
|
|
|
video = createCapture(constraints);
|
|
lastFrame = createGraphics(video.width, video.height);
|
|
frameToDetect = createGraphics(video.width, video.height);
|
|
|
|
// console.log(video);
|
|
// HeadGazeSetup(video);
|
|
// video.size(width, height);
|
|
video.hide(); // Hide the video element, and just show the canvas
|
|
faceapi = ml5.faceApi(video, detection_options, modelReady);
|
|
textAlign(RIGHT);
|
|
|
|
setupAssets();
|
|
}
|
|
|
|
function modelReady() {
|
|
frameToDetect.image(video, 0,0, video.width, video.height);
|
|
faceapi.detect(gotResults);
|
|
}
|
|
|
|
var handleResults = function(){
|
|
// background(parseInt(Math.random()*255),parseInt(Math.random()*255),parseInt(Math.random()*255));
|
|
background((millis()/100)%255,0,0);
|
|
image(video, -width/2 + 10, -height/2 + 10, width - 20, height -20);
|
|
};
|
|
|
|
|
|
gotResults = function(err, result) {
|
|
if (err) {
|
|
console.error(err)
|
|
return
|
|
}
|
|
|
|
// store data for async draw function
|
|
// TODO results to more compatible format
|
|
|
|
lastFrame.image(frameToDetect, 0,0, video.width, video.height);
|
|
detections = parseDetectionResults(result);
|
|
|
|
// size of video becomes known only after camera approval
|
|
if(lastFrame.width != video.width || lastFrame.height != video.height){
|
|
// console.log('Resizing canvas');
|
|
lastFrame.resizeCanvas(video.width, video.height);
|
|
frameToDetect.resizeCanvas(video.width, video.height);
|
|
}
|
|
|
|
// lastFrame.background('red');
|
|
frameToDetect.image(video, 0,0, video.width, video.height);
|
|
|
|
factor_x = width / video.width;
|
|
factor_y = height / video.height;
|
|
|
|
faceapi.detect(gotResults);
|
|
}
|
|
|
|
function drawBox(detections) {
|
|
for (let i = 0; i < detections.length; i++) {
|
|
const alignedRect = detections[i].alignedRect;
|
|
const x = alignedRect._box._x
|
|
const y = alignedRect._box._y
|
|
const boxWidth = alignedRect._box._width
|
|
const boxHeight = alignedRect._box._height
|
|
|
|
|
|
noFill();
|
|
stroke(161, 95, 251);
|
|
strokeWeight(2);
|
|
rect(x, y, boxWidth, boxHeight);
|
|
}
|
|
|
|
}
|
|
|
|
function drawLandmarks(detection) {
|
|
// for (let i = 0; i < detections.length; i++) {
|
|
const mouth = detection.parts.mouth;
|
|
const nose = detection.parts.nose;
|
|
const leftEye = detection.parts.leftEye;
|
|
const rightEye = detection.parts.rightEye;
|
|
const rightEyeBrow = detection.parts.rightEyeBrow;
|
|
const leftEyeBrow = detection.parts.leftEyeBrow;
|
|
const jawOutline = detection.parts.jawOutline;
|
|
|
|
strokePoints(mouth, CLOSE);
|
|
strokePoints(nose, CLOSE);
|
|
strokePoints(leftEye, CLOSE);
|
|
strokePoints(leftEyeBrow, OPEN);
|
|
strokePoints(rightEye, CLOSE);
|
|
strokePoints(rightEyeBrow, OPEN);
|
|
strokePoints(jawOutline, OPEN);
|
|
|
|
// }
|
|
}
|
|
|
|
function strokePoints(points, closed) {
|
|
beginShape();
|
|
|
|
for (let i = 0; i < points.length; i++) {
|
|
const x = points[i].x;
|
|
const y = points[i].y;
|
|
vertex(x, y)
|
|
}
|
|
|
|
if(typeof closed === 'undefined') {
|
|
closed = CLOSE;
|
|
}
|
|
|
|
endShape(closed)
|
|
}
|
|
|
|
function drawPoints(points, radius) {
|
|
if(typeof radius === 'undefined') {
|
|
radius = 2;
|
|
}
|
|
|
|
for (let i = 0; i < points.length; i++) {
|
|
const x = points[i].x;
|
|
const y = points[i].y;
|
|
circle(x, y, radius);
|
|
}
|
|
}
|
|
|
|
function faceDistance(face1, face2){
|
|
// distance between faces, in pixels, not meters.. for now
|
|
// we cheat a little: take centers, visualise circle with r = max(width, height)
|
|
// and find distance between these circles
|
|
box1 = (face1.box.x, face1.box.x + face1.box.width)
|
|
box2 = (face2.box.x, face2.box.x + face2.box.width)
|
|
|
|
c1 = {
|
|
x: face1.box.x + face1.box.width / 2,
|
|
y: face1.box.y + face1.box.height / 2,
|
|
}
|
|
c2 = {
|
|
x: face2.box.x + face2.box.width / 2,
|
|
y: face2.box.y + face2.box.height / 2,
|
|
}
|
|
|
|
r1 = Math.max(face1.box.width, face1.box.height) / 2;
|
|
r2 = Math.max(face2.box.width, face2.box.height) / 2;
|
|
|
|
dx = c1.x - c2.x;
|
|
dy = c1.y - c2.y;
|
|
|
|
return Math.sqrt( Math.pow(dx, 2) + Math.pow(dy, 2) ) - r1 - r2;
|
|
}
|
|
|
|
function mergePoints() {
|
|
// a points should be {x: , y: }
|
|
|
|
// collect all points in the arguments:
|
|
let points = [];
|
|
|
|
for(let arg of arguments) {
|
|
if(Array.isArray(arg)) {
|
|
points.push(...arg);
|
|
} else {
|
|
points.push(arg);
|
|
}
|
|
}
|
|
return points;
|
|
}
|
|
|
|
function getBoundingBox(){
|
|
// arguments contains points, or sets of points. Find bbox
|
|
|
|
const points = mergePoints(...arguments);
|
|
|
|
const xs = points.map((point) => point.x);
|
|
const ys = points.map((point) => point.y);
|
|
|
|
const minx = Math.min(...xs);
|
|
const miny = Math.min(...ys);
|
|
|
|
return {
|
|
x: minx,
|
|
y: miny,
|
|
width: Math.max(...xs) - minx,
|
|
height: Math.max(...ys) - miny,
|
|
}
|
|
}
|
|
|
|
function parseDetectionResults(results) {
|
|
let detections = [];
|
|
for(let result of results) {
|
|
const landmarks = result.landmarks._positions.map((pos) => parseCoordinate(pos));
|
|
let detection = {
|
|
'points': landmarks,
|
|
// TODO: rotation
|
|
'parts': {},
|
|
'box': {
|
|
x: result.alignedRect._box._x * factor_x,
|
|
y: result.alignedRect._box._y * factor_y,
|
|
width: result.alignedRect._box._width * factor_x,
|
|
height: result.alignedRect._box._height * factor_y,
|
|
},
|
|
}
|
|
for(let idx in result.parts) {
|
|
detection.parts[idx] = result.parts[idx].map((pos) => parseCoordinate(pos));
|
|
}
|
|
detection['center'] = {
|
|
x: detection.box.x + detection.box.width / 2,
|
|
y: detection.box.y + detection.box.height / 2,
|
|
}
|
|
detections.push(detection);
|
|
}
|
|
|
|
return detections;
|
|
}
|
|
|
|
/**
|
|
* face api detector returns coordinates with _x and _y attributes.
|
|
* We convert this to the canvas's coordinates
|
|
* @param Object {_x: , _y: }
|
|
*/
|
|
function parseCoordinate(position) {
|
|
return {
|
|
x: position._x * factor_x,
|
|
y: position._y * factor_y,
|
|
}
|
|
}
|
|
|
|
function transformDetection(original) {
|
|
|
|
let b = original.points[36]; // outer point on left eye
|
|
let a = original.points[45]; // outer point on right eye
|
|
|
|
let cx =a.x/2 + b.x/2
|
|
let cy = a.y/2 + b.y/2
|
|
|
|
let angle = atan2(a.y - b.y, a.x - b.x);
|
|
|
|
let detection = {
|
|
'points': original.points.map(p => transformPoint(p, cx, cy, angle)),
|
|
'origin': {x:cx, y:cy},
|
|
'angle': angle,
|
|
original: original
|
|
}
|
|
|
|
let bbox = getBoundingBox(detection.points);
|
|
padding_x = bbox.width * .1;
|
|
padding_y = bbox.height * .1;
|
|
|
|
detection['box'] = {
|
|
x: bbox.x - padding_x,
|
|
y: bbox.y - padding_y,
|
|
width: bbox.width * 1.2,
|
|
height: bbox.height * 1.2
|
|
}
|
|
|
|
return detection;
|
|
}
|
|
|
|
function transformPoint(p, cx, cy, angle) {
|
|
const px = p.x-cx;
|
|
const py = p.y-cy;
|
|
|
|
return {
|
|
x: px * cos(-angle) - py * sin(-angle),
|
|
y: px * sin(-angle) + py * cos(-angle)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
// error handling from consoleUtils.js::hijackConsoleErrorsScript
|
|
function getScriptOff(line) {
|
|
var offs = 0;
|
|
var l = 0;
|
|
var file = '';
|
|
for (var i=0; i<offs.length; i++) {
|
|
var n = offs[i][0];
|
|
if (n < line && n > l) {
|
|
l = n;
|
|
file = offs[i][1];
|
|
}
|
|
}
|
|
return [line - l, file];
|
|
}
|
|
// catch reference errors, via http://stackoverflow.com/a/12747364/2994108
|
|
window.onerror = function (msg, url, lineNumber, columnNo, error) {
|
|
var string = msg.toLowerCase();
|
|
var substring = "script error";
|
|
var data = {};
|
|
// if (url.match(${EXTERNAL_LINK_REGEX}) !== null && error.stack){
|
|
// var errorNum = error.stack.split('about:srcdoc:')[1].split(':')[0];
|
|
// var fileInfo = getScriptOff(errorNum);
|
|
// data = msg + ' (' + fileInfo[1] + ': line ' + fileInfo[0] + ')';
|
|
// } else {
|
|
// var fileInfo = getScriptOff(lineNumber);
|
|
data = msg + ' (' + error.fileName + ': line ' + error.lineNumber + ')';
|
|
// }
|
|
window.parent.postMessage([{
|
|
log: [{
|
|
method: 'error',
|
|
data: [data],
|
|
id: Date.now().toString()
|
|
}],
|
|
source: error.fileName
|
|
}], '*');
|
|
return false;
|
|
};
|
|
// catch rejected promises
|
|
window.onunhandledrejection = function (event) {
|
|
if (event.reason && event.reason.message && event.reason.stack){
|
|
// var errorNum = event.reason.stack.split('about:srcdoc:')[1].split(':')[0];
|
|
// var fileInfo = getScriptOff(errorNum);
|
|
var data = event.reason.message + ' (' + event.reason.stack + ': line ' + event.reason.stack.split("\n")[0] + ')';
|
|
window.parent.postMessage([{
|
|
log: [{
|
|
method: 'error',
|
|
data: [data],
|
|
id: Date.now().toString()
|
|
}],
|
|
source: event.reason.stack.split("\n")[0]
|
|
}], '*');
|
|
}
|
|
};
|