Spectacular Mood Meter - for V2_'s Evening of the Black Box.
Find a file
Umang Mehta d7ea4348ce Updating README.md (#10)
* Updating README.md

* Updating the yml to point to the new build
2016-07-25 14:42:21 -04:00
cmake_modules Add custom module 2016-03-18 14:31:27 -04:00
common SDK-664: Updating the sample apps with x64 (#9) 2016-07-14 15:50:07 -04:00
opencv-webcam-demo SDK-664: Updating the sample apps with x64 (#9) 2016-07-14 15:50:07 -04:00
video-demo SDK-664: Updating the sample apps with x64 (#9) 2016-07-14 15:50:07 -04:00
.gitignore Initial commit 2015-03-09 17:32:50 -04:00
.travis.yml SDK-664: Updating the sample apps with x64 (#9) 2016-07-14 15:50:07 -04:00
affdex-win-samples.sln SDK-664: Updating the sample apps with x64 (#9) 2016-07-14 15:50:07 -04:00
appveyor.yml Updating README.md (#10) 2016-07-25 14:42:21 -04:00
CMakeLists.txt Fix a bug where the screen hangs in the case of photo/video 2016-04-05 13:58:40 -04:00
LICENSE.txt Add license file to the repository 2016-01-05 11:36:58 -05:00
README.md Updating README.md (#10) 2016-07-25 14:42:21 -04:00

#Sample Apps for Affdex SDK for Windows and Linux

Welcome to our repository on GitHub! Here you will find example code to get you started with our Affdex SDK 3.1 and begin emotion-enabling you own app! Documentation for the SDKs is available on the Affectiva's Developer Portal.

Build Status

Dependencies

Windows

  • Affdex SDK 3.1 (64 bit)
  • Visual Studio 2013 or higher

Linux

  • Ubuntu 14.04 or CentOS 7
  • Affdex SDK 3.1
  • CMake 2.8 or higher
  • GCC 4.8

Additional dependencies

  • OpenCV 2.4
  • Boost 1.59

Installation

Windows

  • Install the SDK using MSI installer.
  • The additional dependencies get installed automatically by NuGet.

Ubuntu

sudo apt-get install build-essential libopencv-dev libboost1.55-all-dev cmake
wget https://download.affectiva.com/linux/affdex-cpp-sdk-3.1-396-linux-64bit.tar.gz
mkdir $HOME/affdex-sdk
tar -xzvf affdex-cpp-sdk-3.1-396-linux-64bit.tar.gz -C $HOME/affdex-sdk
export AFFDEX_DATA_DIR=$HOME/affdex-sdk/data
git clone https://github.com/Affectiva/cpp-sdk-samples.git $HOME/sdk-samples
mkdir $HOME/build
cd $HOME/build
cmake -DOpenCV_DIR=/usr/ -DBOOST_ROOT=/usr/ -DAFFDEX_DIR=$HOME/affdex-sdk $HOME/sdk-samples
make
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/affdex-sdk/lib

OpenCV-webcam-demo (c++)

Project for demoing the FrameDetector class. It grabs frames from the camera, analyzes them and displays the results on screen.

The following command line arguments can be used to run it:

-h [ --help ]                        Display this help message.
-d [ --data ] arg (=data)            Path to the data folder
-l [ --license ] arg (=test.license) License file.
-r [ --resolution ] arg (=640 480)   Resolution in pixels (2-values): width
                                     height
--pfps arg (=30)                     Processing framerate.
--cfps arg (=30)                     Camera capture framerate.
--bufferLen arg (=30)                process buffer size.
--cid arg (=0)                       Camera ID.
--faceMode arg (=0)                  Face detector mode (large faces vs small
                                    faces).
--numFaces arg (=1)                  Number of faces to be tracked.
--draw arg (=1)                      Draw metrics on screen.

Video-demo (c++)

Project for demoing the Windows SDK VideoDetector class and PhotoDetector class. It processs video or image files, displays the emotion metrics and exports the results in a csv file.

The following command line arguments can be used to run it:

-h [ --help ]                        Display this help message.
-d [ --data ] arg (=data)            Path to the data folder
-l [ --license ] arg (=test.license) License file.
-i [ --input ] arg                   Video or photo file to process.
--pfps arg (=30)                     Processing framerate.
--draw arg (=1)                      Draw video on screen.
--faceMode arg (=1)                  Face detector mode (large faces vs small
                                     faces).
--numFaces arg (=1)                  Number of faces to be tracked.
--loop arg (=0)                      Loop over the video being processed.

For an example of how to use Affdex in a C# application .. please refer to AffdexMe