moodmeter/parse_output.py
2017-12-04 21:47:24 +01:00

580 lines
17 KiB
Python

import os
from PIL import Image, ImageDraw,ImageTk
import argparse
import json
import time
import glob
import numpy as np
import datetime
import Tkinter
import moviepy.editor as mpy
import sys
import wave
FPS = 1
facialParameters = [
"smile",
"innerBrowRaise",
"browRaise",
"browFurrow",
"noseWrinkle",
"upperLipRaise",
"lipCornerDepressor",
"chinRaise",
"lipPucker",
"lipPress",
"lipSuck",
"mouthOpen",
"smirk",
#~ "attention",
"eyeClosure",
"eyeWiden",
"cheekRaise",
"lidTighten",
"dimpler",
"lipStretch",
"jawDrop",
]
defaultFacialParameters = [
"smile",
"innerBrowRaise",
"browRaise",
"browFurrow",
"noseWrinkle",
"upperLipRaise",
"lipCornerDepressor",
"chinRaise",
#~ "lipPucker",
"lipPress",
"lipSuck",
"mouthOpen",
#~ "smirk",
#~ "attention",
"eyeClosure",
"eyeWiden",
"cheekRaise", #
"lidTighten",
"dimpler", #
"lipStretch",
"jawDrop", #
]
parser = argparse.ArgumentParser(description='Parses opencv-webcam-demo json output files and collects statistics')
parser.add_argument('--frameOutput', '-o', required=True, help='directory to look for frames & json')
parser.add_argument('--targetDir', help='Directory in which files are stored')
parser.add_argument('--status', action='store_true', help='Keep status of last frame')
parser.add_argument('--stats', action='store_true', help='Show statistics for all frames')
parser.add_argument('--cutAllFaces', action='store_true', help='Cut out all faces from all frames')
parser.add_argument('--sum', action='store_true', help='Get total scores over all time')
parser.add_argument('--unique', action='store_true', help='Get most unique window')
parser.add_argument('--avg', action='store_true', help='Get most average window')
parser.add_argument('--json', action='store_true', help='Get output as JSON for graphs (graphs.php)')
parser.add_argument('--wav', '-w', required=False, default=False, help='split wave file into windows')
parser.add_argument('--disonant', action='store_true', help='Get most disonant faces over time')
parser.add_argument('--window-size', '-s', type=int, default=10, help='The nr of frames to group in one sliding window for analysis')
parser.add_argument("--params", "--metrics", "-p", type=str, nargs='+', default=defaultFacialParameters, choices=facialParameters, help="The parameters used to calculate the statistics")
args = parser.parse_args()
faces = []
class Face:
def __init__(self, frame, data):
self.id = data['id']
self.frame = frame # Frame class
self.data = data # json data
self.disonanceScore = None # a first attempt, can be deprecated?
self.anomalyScore = None
def getFaceImg(self):
r = self.data['rect']
return self.frame.getImg().crop((int(r['x']), int(r['y']), int(r['x']+r['w']), int(r['y']+r['h'])))
def getCharacteristicVector(self, params):
self.vector = [self.data[p] for p in params]
return self.vector
def setAnomalyScore(self, score):
self.anomalyScore = score
class Frame:
"""
Everything for an analysed frame
"""
def __init__(self, outputPath, nr):
self.outputPath = outputPath
self.nr = nr
self.name = "frame%06d" % nr
self.jsonPath = os.path.join(outputPath, ("frame%06d" % (nr)) + ".json")
self.imgPath = os.path.join(outputPath, self.name + ".jpg")
self.faces = None # init with getFaces
def getTime(self):
"""
@return datetime
"""
with Image.open(self.imgPath) as i:
#~ print(i._getexif()[36867])
return datetime.datetime.strptime(i._getexif()[36867], "%Y:%m:%d %H:%M:%S")
#~ return datetime.datetime.fromtimestamp(os.path.getmtime(self.imgPath))
def getJson(self):
#~ try:
with open(self.jsonPath) as fp:
return json.load(fp)
#~ except Exception as e:
#~ # no json file yet?
#~ return None
def getImg(self, markFaces = False):
img = Image.open(self.imgPath)
if not markFaces:
return img
draw = ImageDraw.Draw(img)
for f in self.faces:
xy1 = (int(f.data['rect']['x']), int(f.data['rect']['y']))
xy2 = (int(f.data['rect']['x'] + f.data['rect']['w']), int(f.data['rect']['y'] + f.data['rect']['h']))
draw.rectangle([xy1, xy2], outline="#ff0000")
return img
def getFaces(self):
if self.faces is None:
j = self.getJson()
self.faces = [Face(self, f) for f in j['faces']]
faces.extend(self.faces)
return self.faces
def updateDisonanceScores(self):
totalValence = 0.0
totalFaces = 0
for face in self.getFaces():
totalValence += face.data['valence']
totalFaces += 1
if totalFaces == 0:
return
avgValence = totalValence / totalFaces
for face in self.getFaces():
face.disonanceScore = abs(face.data['valence'] - avgValence)
def getAverageV(self, params):
vectors = [face.getCharacteristicVector(params) for face in self.getFaces()]
vAvg = np.mean(vectors, axis=0)
return vAvg
def getStdDev(self, params):
"""
Get standard deviation of the faces within the frame for given params
"""
vectors = [f.getCharacteristicVector(params) for f in self.getFaces()]
return np.std(vectors)
def updateAnomalyScores(self, params):
vAvg = self.getAverageV(params)
for face in self.getFaces():
face.setAnomalyScore(np.linalg.norm(face.getCharacteristicVector() - vAvg))
def exists(self):
return os.path.exists(self.jsonPath) and os.path.exists(self.imgPath)
frames = {}
class Window:
def __init__(self, frameSubset):
"""
Init a sliding window for given Frame-s
"""
self.frames = frameSubset
self.deviation = None
self.standardDeviation = None
def getStartTime(self):
"""get time of first frame in window. Returns datetime"""
return self.frames[0].getTime()
def getEndTime(self):
"""get time of last frame in window. Returns datetime"""
return self.frames[-1].getTime()
def getFaces(self):
faces = []
for frame in self.frames:
faces.extend(frame.getFaces())
return faces
def getStdDev(self, params):
"""
Get standard deviation of the faces within the window for given params
"""
vectors = [f.getCharacteristicVector(params) for f in self.getFaces()]
return np.std(vectors)
def getAverageV(self, params):
vectors = [f.getCharacteristicVector(params) for f in self.getFaces()]
vAvg = np.mean(vectors, axis=0)
return vAvg
@staticmethod
def createWindows(windowSize, frames):
"""
Give a full list of frames and tunrn it into a collection of sliding windows
"""
frames = sorted(frames.items(), key=lambda f: f[0])
frames = [f[1] for f in frames]
windows = []
windowCount = len(frames) / windowSize
#~ windowCount = len(frames) - windowSize + 1
if windowCount < 1:
raise Exception("Not enough frames ({}) for a window of size {}".format(len(frames), windowSize))
for offset in range(0, windowCount):
frameSubset = frames[offset*windowSize:(offset+1)*windowSize]
#~ frameSubset = frames[offset:offset+windowSize]
windows.append(Window(frameSubset))
return windows
class WindowCollection:
def __init__(self, windowSize, frames):
self.windows = Window.createWindows(windowSize, frames)
self.frames = frames
#~ self.faces = [face for face in frame.getFaces() for frame in frames]
#~ def getMostWindowsClosestToMedian(self, nr = 5):
#~ """
#~ Get windows with the faces closest to the median
#~ """
#~ self.faces
def getWindowVectors(self, params):
return [window.getAverageV(params) for window in self.windows]
def getWindowsByDeviation(self, params):
vectors = self.getWindowVectors(params)
vAvg = np.mean(vectors, axis=0)
#~ diffs = [numpy.linalg.norm(v-vAvg) for v in vectors]
#~ min_index, min_value = min(enumerate(diffs), key=lambda p: p[1])
#~ max_index, max_value = max(enumerate(diffs), key=lambda p: p[1])
return sorted(self.windows, key=lambda w: np.linalg.norm(w.getAverageV(params)-vAvg))
def getDeviationForWindow(self, window, params):
vectors = self.getWindowVectors(params)
vAvg = np.mean(vectors, axis=0)
return np.linalg.norm(w.getAverageV(params)-vAvg)
def getUniqueWindows(self, params, nr=5):
windows = self.getWindowsByDeviation(params)
return windows[0: nr]
def getMostAvgWindows(self, params, nr=5):
windows = self.getWindowsByDeviation(params)
windows.reverse()
return windows[0:nr]
def getMostContrastingWindows(self, params, nr=5):
sortedWindows = sorted(self.windows, key=lambda w: w.getStdDev(params), reverse=True)
return sortedWindows[0:nr]
def loadFrames(frameDir):
global frames
nr = 2
nextFrame = Frame(frameDir, nr)
# TODO; make threaded and infinite loop that updates global frames
while nextFrame.exists():
frames[nr] = nextFrame
nr+=1
nextFrame = Frame(frameDir, nr)
return frames
def getLastFrame(frameDir):
jsons = sorted(glob.glob(os.path.join(frameDir, "*.json")))
if len(jsons):
lastJson = jsons[-1]
lastNr = int(lastJson[-11:-5])
frame = Frame(frameDir, lastNr)
return frame
return None
def cutOutFaces(frame, targetDir):
for faceNr, face in enumerate(frame.getFaces()):
print(faceNr, face)
img = face.getFaceImg()
faceImgPath = os.path.join(targetDir, frame.name + "-%s.jpg" % face.id)
print(faceImgPath)
img.save(faceImgPath)
pass
def validateJsonTimes():
lastTime = None
for frameNr, frame in loadFrames(args.frameOutput).items():
thisTime = frame.getJson()['t']
#print(frameNr, thisTime)
if not (lastTime is None) and lastTime > thisTime:
sys.stderr.write("ERRROR!! Time error at %s. Restarted scanner there?\n" % frameNr)
lastTime = thisTime
def sumEmotions():
total = 0.
summed = 0.
items = 0
for frameNr, frame in loadFrames(args.frameOutput).items():
for face in frame.getFaces():
total += abs(face.data['valence'])
summed += face.data['valence']
items += 1
average = summed / items
print ("Total emotion %d, positivity score %d (average: %s)" % (total, summed, average))
def getMostDisonant(nr = 5):
for frameNr, frame in loadFrames(args.frameOutput).items():
frame.updateDisonanceScores()
faces.sort(key=lambda x: x.disonanceScore, reverse=True)
mostDisonantFaces = faces[:nr]
for face in mostDisonantFaces:
print("Frame %d, face %d, score %d, valence %d" % (face.frame.nr, face.id, face.disonanceScore, face.data['valence']))
face.getFaceImg().show()
def getAnomalies(params, nr = 5):
for frameNr, frame in loadFrames(args.frameOutput).items():
frame.updateAnomalyScores(params)
faces.sort(key=lambda x: x.anomalyScore, reverse=True)
anomalies = faces[:nr]
for face in anomalies:
print("Frame %d, face %d, score %d" % (face.frame.nr, face.id, face.anomalyScore))
#~ getCharacteristicVector
face.getFaceImg().show()
def printFrameStats(frame, params):
os.system('clear')
print(time.time())
print( ("Nr: %d" % frame.nr).ljust(40) + ("t: {}".format(frame.getJson()['t'])) )
#~ print
faces = frame.getFaces()
print("Faces: %d" % len(faces))
if len(faces) < 1:
return
print " ".ljust(20), "0%".rjust(13), "q1".rjust(13), "median".rjust(13), "q3".rjust(13), "100%".rjust(13)
for p in params:
q0 = np.percentile(np.array([f.data[p] for f in faces]),0)
q1 = np.percentile(np.array([f.data[p] for f in faces]),25)
q2 = np.percentile(np.array([f.data[p] for f in faces]),50)
q3 = np.percentile(np.array([f.data[p] for f in faces]),75)
q4 = np.percentile(np.array([f.data[p] for f in faces]),100)
print p.ljust(20), ("%f%%" % q0).rjust(13), ("%f%%" % q1).rjust(13),("%f%%" % q2).rjust(13),("%f%%" % q3).rjust(13),("%f%%" % q4).rjust(13)
#~ TODO: speaker stats
frame.updateDisonanceScores()
dissonantFace = max(faces,key=lambda f: f.disonanceScore)
#~ dissonantFace.getFaceImg()
def monitorStatus(frameDir, params):
while True:
frame = getLastFrame(frameDir)
if not frame is None:
printFrameStats(frame, params)
# don't check too often
time.sleep(.5)
def printStats(frameDir, params):
frames = loadFrames(frameDir)
vAvg = np.mean([f.getAverageV(params) for i,f in frames.items()], axis=0)
for nr, frame in frames.items():
max_index, max_value = max(enumerate(frame.getAverageV(params)), key=lambda a: a[1])
distance = np.linalg.norm(vAvg - frame.getAverageV(params))
print("{:06d}: {: >4} faces (d: {: 6.2f}, internal s {: 6.2f}, max: {})".format(frame.nr, len(frame.getFaces()),distance, frame.getStdDev(params), params[max_index]))
print("{} frames".format(len(frames)))
def playWindowStopmotion(window, params):
"""
Play a set of sliding window frames as stop motion video
"""
root = Tkinter.Tk()
root.geometry('%dx%d+%d+%d' % (1000,1000,0,0))
canvas = Tkinter.Canvas(root,width=1000,height=1000)
canvas.pack()
old_label_image = None
for frame in window.frames:
image = frame.getImg(markFaces=True)
basewidth = 1000
wpercent = (basewidth / float(image.size[0]))
hsize = int((float(image.size[1]) * float(wpercent)))
image = image.resize((basewidth, hsize), Image.ANTIALIAS)
tkpi = ImageTk.PhotoImage(image)
canvas.delete("IMG")
imagesprite = canvas.create_image(500,500,image=tkpi, tags="IMG")
root.update()
time.sleep(1)
def createWindowVideo(window, params, targetDir):
global FPS
basewidth = 1920
i=0
images = []
for frame in window.frames:
image = frame.getImg(markFaces=True)
wpercent = (basewidth / float(image.size[0]))
hsize = int((float(image.size[1]) * float(wpercent)))
image = image.resize((basewidth, hsize), Image.ANTIALIAS)
imgName = os.path.join("/tmp/","renderframe{:06d}.jpg".format(i))
print("(VIDEO) Create frame: {}".format(imgName))
image.save(imgName)
images.append(imgName)
i+=1
clip = mpy.ImageSequenceClip(images, fps=FPS)
#~ audio = mpy.AudioFileClip(filename="")
#~ audio.set_start(...)
#~ audio.set_duration(len(images)/FPS)
#~ clip = clip.set_audio(audio)
targetName = "video_" + "-".join(params) + ".mp4"
print("(VIDEO) Write video: {}".format(targetName))
clip.write_videofile(os.path.join(targetDir,targetName), fps=FPS)
def getGraphData(frames, params, window_size, outputNr):
"""
Get data to generate graph with
"""
collection = WindowCollection(window_size, frames)
windows = collection.windows
jsonOutput = {'windows':[], 'outputNr': outputNr}
for window in windows:
w = {
'start': window.getStartTime().strftime('%Y-%m-%d %H:%M:%S'),
'end': window.getEndTime().strftime('%Y-%m-%d %H:%M:%S'),
'startFrame': window.frames[0].name,
'params': {},
'param_values': {},
}
pVs = []
for param in params:
paramV = window.getAverageV([param])
value = paramV[0]
pVs.append(value)
w['params'][param] = value
#~ values = []
#~ for frame in window.frames:
#~ for face in frame.getFaces():
#~ values.append(face.data[param])
#~ w['param_values'][param] = values
w['avg'] = np.mean(pVs)
w['stddev'] = window.getStdDev(params)
jsonOutput['windows'].append(w)
jsonOutput['range'] = [
jsonOutput['windows'][0]['start'],
jsonOutput['windows'][-1]['end'],
]
return jsonOutput
def splitAudio(frames, window_size, srcWav, targetDir):
"""
Get audio cllips
"""
global FPS
if not os.path.exists(srcWav):
raise Exception("Wav does not exist")
if not os.path.exists(targetDir):
raise Exception("Target dir does not exist")
collection = WindowCollection(window_size, frames)
origAudio = wave.open(srcWav,'r')
frameRate = origAudio.getframerate()
nChannels = origAudio.getnchannels()
sampWidth = origAudio.getsampwidth()
windows = collection.windows
for i, window in enumerate(windows):
print("Window {}, {}".format(i, window.frames[0].name))
start = i * window_size * FPS
end = i+1 * window_size * FPS
origAudio.setpos(start*frameRate)
print(origAudio.tell())
chunkData = origAudio.readframes(int((end-start)*frameRate))
print(origAudio.tell())
targetFile = os.path.join(targetDir, window.frames[0].name + '.wav')
print("\t{}".format(targetFile))
chunkAudio = wave.open(targetFile,'w')
chunkAudio.setnchannels(nChannels)
chunkAudio.setsampwidth(sampWidth)
chunkAudio.setframerate(frameRate)
chunkAudio.writeframes(chunkData)
chunkAudio.close()
#~ def createGraphPage(windows, params, targetFilename):
#~ jsonOutput = {'windows':[]}
#~ for window in windows:
#~ window
validateJsonTimes()
if args.sum:
sumEmotions()
if args.disonant:
getMostDisonant()
if args.cutAllFaces:
faceDir = os.path.join(args.frameOutput, 'faces')
if not os.path.exists(faceDir):
os.mkdir(faceDir)
for frameNr, frame in loadFrames(args.frameOutput).items():
cutOutFaces(faceDir)
if args.unique:
collection = WindowCollection(args.window_size, frames)
windows = collection.getUniqueWindows(args.params)
#~ print(windows)
if args.targetDir:
createWindowVideo(windows[0], args.params, args.targetDir)
else:
playWindowStopmotion(windows[0], args.params)
if args.avg:
collection = WindowCollection(args.window_size, frames)
windows = collection.getMostAvgWindows(args.params)
#~ print(windows)
if args.targetDir:
createWindowVideo(windows[0], args.params, args.targetDir)
else:
playWindowStopmotion(windows[0], args.params)
if args.status:
monitorStatus(args.frameOutput, args.params)
if args.stats:
printStats(args.frameOutput, args.params)
if args.json:
nr = int(args.frameOutput[-1])
print json.dumps(getGraphData(frames, args.params, args.window_size, nr))
if args.wav:
print splitAudio(frames, args.window_size, args.wav, args.targetDir)