moodmeter/split_and_merge_output.py
2017-12-04 21:47:24 +01:00

97 lines
3.6 KiB
Python

import argparse
import os
from PIL import Image
import time
import json
parser = argparse.ArgumentParser(description="""
Frames are split into segments so SMALL_FACES actually detects _really_ small faces. This requires enabling --segments on opencv-webcam-demo (so it detects/writes segment%06d files) split_and_merge_output.py also remerges these segment%06.json files into a frame%06d.json file.
""")
parser.add_argument('--frameOutput', '-o', required=True, help='directory to look for frames & json')
parser.add_argument('--segmentDir', required=True, help='directory to write segfor frames & json')
args = parser.parse_args()
if not os.path.exists(args.frameOutput):
raise Exception(args.frameOutput + " does not exist")
if not os.path.exists(args.segmentDir):
raise Exception(args.segmentDir + " does not exist")
def getSectionsForSize(size):
"""
Get sections based on image size, in a tuple format (width, height)
"""
return [
( 0, 0, int(size[0]/1.85), int(size[1]/1.85) ),
( int(size[0]/2.1), 0, size[0], int(size[1]/1.85) ),
( 0, int(size[1]/2.1), int(size[0]/1.85), size[1] ),
( int(size[0]/2.1), int(size[1]/2.1), size[0], size[1] ),
]
nextInNr = 1
segmentCount = 4 # cannot really be changed for now
nextOutNr = segmentCount
while True:
nextJpg = os.path.join(args.frameOutput, "frame%06d.jpg" % nextInNr)
nextInJson = os.path.join(args.frameOutput, "frame%06d.json" % nextInNr)
while os.path.exists(nextJpg) and not os.path.exists(nextInJson):
print("(SPLIT) Found: {}".format(nextJpg))
img = Image.open(nextJpg)
segments = getSectionsForSize(img.size)
for i, segment in enumerate(segments):
segmentImg = img.crop(segment)
segmentNr = (nextInNr-1) * segmentCount + i + 1 # start at 1, increment from there
segmentFilename = os.path.join(args.segmentDir, "segment%06d.jpg" % segmentNr)
segmentImg.save(segmentFilename, quality=90)
print("(SPLIT) Created: {}".format(segmentFilename))
nextInNr += 1
nextJpg = os.path.join(args.frameOutput, "frame%06d.jpg" % nextInNr)
nextInJson = os.path.join(args.frameOutput, "frame%06d.jpg" % nextInNr)
nextJson = os.path.join(args.segmentDir, "segment%06d.json" % nextOutNr)
while os.path.exists(nextJson):
print("(MERGE) Found: {}".format(nextJson))
frameOutNr = (nextOutNr - 1) / segmentCount + 1 # 1,2,3,4 -> 1; 5,6,7,8 -> 2 (uses trick to divide ints: 7/4=1)
img = Image.open( os.path.join(args.frameOutput, "frame%06d.jpg" % frameOutNr) )
segments = getSectionsForSize(img.size)
creationTime = img._getexif()[36867]
faces = []
times = []
segmentImages = []
for i, segment in enumerate(segments):
segmentNr = nextOutNr - segmentCount + i + 1 # nextOutNr: 4 => 1,2,3,4
segmentImages.append(os.path.join(args.segmentDir, "segment%06d.jpg" % segmentNr))
with open( os.path.join(args.segmentDir, "segment%06d.json" % segmentNr) ) as fp:
j = json.load(fp)
for f in j['faces']:
f['rect']['x'] += segment[0]
f['rect']['y'] += segment[1]
f['id'] = "%d%02d" % ((i+1), f['id'])
faces.append(f)
times.append(j['t'])
data = {
'nr': int(frameOutNr),
't': creationTime,
'faces': faces,
'sectionTimes': times,
}
jsonOutFilename = os.path.join(args.frameOutput, "frame%06d.json" % frameOutNr)
with open(jsonOutFilename, 'w') as fp:
json.dump(data, fp)
print("(MERGE) Wrote: {}".format(jsonOutFilename))
print("(MERGE) Cleanup segments for frame {}".format(frameOutNr))
for imgName in segmentImages:
print("(MERGE) \t Unlink {}".format(imgName))
os.unlink(imgName)
nextOutNr += segmentCount
nextJson = os.path.join(args.segmentDir, "segment%06d.json" % nextOutNr)
time.sleep(0.2)