status etc
This commit is contained in:
parent
baa306763e
commit
7445907e56
1 changed files with 145 additions and 24 deletions
169
parse_output.py
169
parse_output.py
|
@ -2,10 +2,17 @@ import os
|
|||
from PIL import Image, ImageDraw
|
||||
import argparse
|
||||
import json
|
||||
import time
|
||||
import glob
|
||||
import numpy as np
|
||||
|
||||
|
||||
parser = argparse.ArgumentParser(description='Parses opencv-webcam-demo json output files and collects statistics')
|
||||
parser.add_argument('--frameOutput', '-o', required=True, help='directory to look for frames & json')
|
||||
parser.add_argument('--status', '-s', action='store_true', help='Keep status of last frame')
|
||||
parser.add_argument('--cutAllFaces', action='store_true', help='Cut out all faces from all frames')
|
||||
parser.add_argument('--sum', action='store_true', help='Get total scores over all time')
|
||||
parser.add_argument('--disonant', action='store_true', help='Get most disonant faces over time')
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@ -15,11 +22,41 @@ class Face:
|
|||
self.id = data['id']
|
||||
self.frame = frame # Frame class
|
||||
self.data = data # json data
|
||||
self.disonanceScore = None
|
||||
self.disonanceScore = None # a first attempt, can be deprecated?
|
||||
self.anomalyScore = None
|
||||
|
||||
def getFaceImg(self):
|
||||
r = self.data['rect']
|
||||
return self.frame.getImg().crop((int(r['x']), int(r['y']), int(r['x']+r['w']), int(r['y']+r['h'])))
|
||||
|
||||
def getCharacteristicVector(self):
|
||||
self.vector = np.array([
|
||||
self.data["smile"],
|
||||
self.data["innerBrowRaise"],
|
||||
self.data["browRaise"],
|
||||
self.data["browFurrow"],
|
||||
self.data["noseWrinkle"],
|
||||
self.data["upperLipRaise"],
|
||||
self.data["lipCornerDepressor"],
|
||||
self.data["chinRaise"],
|
||||
self.data["lipPucker"],
|
||||
self.data["lipPress"],
|
||||
self.data["lipSuck"],
|
||||
self.data["mouthOpen"],
|
||||
self.data["smirk"],
|
||||
self.data["eyeClosure"],
|
||||
# self.data["attention"],
|
||||
self.data["eyeWiden"],
|
||||
self.data["cheekRaise"],
|
||||
self.data["lidTighten"],
|
||||
self.data["dimpler"],
|
||||
self.data["lipStretch"],
|
||||
self.data["jawDrop"],
|
||||
])
|
||||
return self.vector
|
||||
|
||||
def setAnomalyScore(self, score):
|
||||
self.anomalyScore = score
|
||||
|
||||
class Frame:
|
||||
"""
|
||||
|
@ -70,7 +107,16 @@ class Frame:
|
|||
|
||||
for face in self.getFaces():
|
||||
face.disonanceScore = abs(face.data['valence'] - avgValence)
|
||||
|
||||
|
||||
def getAverageV(self):
|
||||
vectors = [face.getCharacteristicVector() for face in self.getFaces()]
|
||||
vAvg = np.mean(vectors, axis=0)
|
||||
return vAvg
|
||||
|
||||
def updateAnomalyScores(self):
|
||||
vAvg = self.getAverageV()
|
||||
for face in self.getFaces():
|
||||
face.setAnomalyScore(np.linalg.norm(face.getCharacteristicVector() - vAvg))
|
||||
|
||||
|
||||
def exists(self):
|
||||
|
@ -89,6 +135,15 @@ def loadFrames(frameDir):
|
|||
nextFrame = Frame(frameDir, nr)
|
||||
return frames
|
||||
|
||||
def getLastFrame(frameDir):
|
||||
jsons = sorted(glob.glob(os.path.join(frameDir, "*.json")))
|
||||
if len(jsons):
|
||||
lastJson = jsons[-1]
|
||||
lastNr = int(lastJson[-11:-5])
|
||||
frame = Frame(frameDir, lastNr)
|
||||
return frame
|
||||
return None
|
||||
|
||||
def cutOutFaces(frame, targetDir):
|
||||
for faceNr, face in enumerate(frame.getFaces()):
|
||||
print(faceNr, face)
|
||||
|
@ -98,26 +153,20 @@ def cutOutFaces(frame, targetDir):
|
|||
img.save(faceImgPath)
|
||||
pass
|
||||
|
||||
frames = loadFrames(args.frameOutput)
|
||||
|
||||
lastTime = None
|
||||
for frameNr, frame in frames.items():
|
||||
thisTime = frame.getJson()['t']
|
||||
#print(frameNr, thisTime)
|
||||
if not (lastTime is None) and lastTime > thisTime:
|
||||
print "ERRROR!! Time error at %s. Restarted scanner there?" % frameNr
|
||||
lastTime = thisTime
|
||||
|
||||
faceDir = os.path.join(args.frameOutput, 'faces')
|
||||
|
||||
if not os.path.exists(faceDir):
|
||||
os.mkdir(faceDir)
|
||||
def validateJsonTimes():
|
||||
lastTime = None
|
||||
for frameNr, frame in loadFrames(args.frameOutput).items():
|
||||
thisTime = frame.getJson()['t']
|
||||
#print(frameNr, thisTime)
|
||||
if not (lastTime is None) and lastTime > thisTime:
|
||||
print "ERRROR!! Time error at %s. Restarted scanner there?" % frameNr
|
||||
lastTime = thisTime
|
||||
|
||||
def sumEmotions():
|
||||
total = 0.
|
||||
summed = 0.
|
||||
items = 0
|
||||
for frameNr, frame in frames.items():
|
||||
for frameNr, frame in loadFrames(args.frameOutput).items():
|
||||
for face in frame.getFaces():
|
||||
total += abs(face.data['valence'])
|
||||
summed += face.data['valence']
|
||||
|
@ -127,17 +176,89 @@ def sumEmotions():
|
|||
print ("Total emotion %d, positivity score %d (average: %s)" % (total, summed, average))
|
||||
|
||||
def getMostDisonant(nr = 5):
|
||||
for frameNr, frame in frames.items():
|
||||
for frameNr, frame in loadFrames(args.frameOutput).items():
|
||||
frame.updateDisonanceScores()
|
||||
faces.sort(key=lambda x: x.disonanceScore, reverse=True)
|
||||
|
||||
mostDisonantFaces = faces[:5]
|
||||
mostDisonantFaces = faces[:nr]
|
||||
for face in mostDisonantFaces:
|
||||
print("Frame %d, face %d, score %d, valence %d" % (face.frame.nr, face.id, face.disonanceScore, face.data['valence']))
|
||||
face.getFaceImg().show()
|
||||
|
||||
|
||||
def getAnomalies(nr = 5):
|
||||
for frameNr, frame in loadFrames(args.frameOutput).items():
|
||||
frame.updateAnomalyScores()
|
||||
faces.sort(key=lambda x: x.anomalyScore, reverse=True)
|
||||
|
||||
sumEmotions()
|
||||
getMostDisonant()
|
||||
#~ for frameNr, frame in frames.items():
|
||||
#~ cutOutFaces(frame, faceDir)
|
||||
anomalies = faces[:nr]
|
||||
for face in anomalies:
|
||||
print("Frame %d, face %d, score %d" % (face.frame.nr, face.id, face.anomalyScore))
|
||||
#~ getCharacteristicVector
|
||||
face.getFaceImg().show()
|
||||
|
||||
def printFrameStats(frame):
|
||||
os.system('clear')
|
||||
print(time.time())
|
||||
print( ("Nr: %d" % frame.nr).ljust(40) + ("t: %f" % frame.getJson()['t']) )
|
||||
#~ print
|
||||
faces = frame.getFaces()
|
||||
print("Faces: %d" % len(faces))
|
||||
|
||||
if len(faces) < 1:
|
||||
return
|
||||
|
||||
params = ['smile', 'browFurrow']
|
||||
|
||||
q0s = [np.percentile(np.array([f.data[param] for f in faces]),0) for param in params]
|
||||
q1s = [np.percentile(np.array([f.data[param] for f in faces]),25) for param in params]
|
||||
q2s = [np.percentile(np.array([f.data[param] for f in faces]),50) for param in params]
|
||||
q3s = [np.percentile(np.array([f.data[param] for f in faces]),75) for param in params]
|
||||
q4s = [np.percentile(np.array([f.data[param] for f in faces]),100) for param in params]
|
||||
|
||||
print " ".ljust(8),
|
||||
for p in params:
|
||||
print p.center(20),
|
||||
print ""
|
||||
|
||||
print(" 0% " + "".join([("%f%%" % q).rjust(20) for q in q0s]))
|
||||
print(" q1 " + "".join([("%f%%" % q).rjust(20) for q in q1s]))
|
||||
print(" median " + "".join([("%f%%" % q).rjust(20) for q in q2s]))
|
||||
print(" q3 " + "".join([("%f%%" % q).rjust(20) for q in q3s]))
|
||||
print(" 100% " + "".join([("%f%%" % q).rjust(20) for q in q4s]))
|
||||
|
||||
#~ TODO: speaker stats
|
||||
|
||||
frame.updateDisonanceScores()
|
||||
dissonantFace = max(faces,key=lambda f: f.disonanceScore)
|
||||
#~ dissonantFace.getFaceImg()
|
||||
|
||||
|
||||
def monitorStatus(frameDir):
|
||||
while True:
|
||||
frame = getLastFrame(frameDir)
|
||||
if not frame is None:
|
||||
printFrameStats(frame)
|
||||
|
||||
# don't check too often
|
||||
time.sleep(.5)
|
||||
|
||||
|
||||
validateJsonTimes()
|
||||
|
||||
if args.sum:
|
||||
sumEmotions()
|
||||
|
||||
if args.disonant:
|
||||
getMostDisonant()
|
||||
|
||||
if args.cutAllFaces:
|
||||
faceDir = os.path.join(args.frameOutput, 'faces')
|
||||
|
||||
if not os.path.exists(faceDir):
|
||||
os.mkdir(faceDir)
|
||||
for frameNr, frame in loadFrames(args.frameOutput).items():
|
||||
cutOutFaces(faceDir)
|
||||
|
||||
|
||||
if args.status:
|
||||
monitorStatus(args.frameOutput)
|
||||
|
|
Loading…
Reference in a new issue