diff --git a/README.md b/README.md
index 1b5a4c9..3a27614 100644
--- a/README.md
+++ b/README.md
@@ -1,117 +1,9 @@
-#Sample Apps for Affdex SDK for Windows and Linux
+Start two processes:
-Welcome to our repository on GitHub! Here you will find example code to get you started with our Affdex Linux SDK 3.2, Affdex Windows SDK 3.4 and begin emotion-enabling you own app! Documentation for the SDKs is available on the Affectiva's Developer Portal.
+gphoto2 to capture images:
-*Build Status*
-- Windows: [![Build status](https://ci.appveyor.com/api/projects/status/pn2y9h8a3nnkiw41?svg=true)]
-(https://ci.appveyor.com/project/ahamino/win-sdk-samples)
-- Ubuntu: [![Build Status](https://travis-ci.org/Affectiva/cpp-sdk-samples.svg?branch=master)](https://travis-ci.org/Affectiva/cpp-sdk-samples)
+`gphoto2 --port usb: --capture-image-and-download -I 1 --filename=/home/crowd/output/frame%06n.jpg`
-Dependencies
-------------
+The modified 'webcam demo' to analyse and generate json:
-*Windows*
-- Affdex SDK 3.4 (64 bit)
-- Visual Studio 2013 or higher
-
-*Linux*
-- Ubuntu 14.04 or CentOS 7
-- Affdex SDK 3.2
-- CMake 2.8 or higher
-- GCC 4.8
-
-*Additional dependencies*
-
-- OpenCV 2.4
-- Boost 1.55
-- libuuid
-- libcurl
-- libopenssl
-
-Installation
-------------
-
-
-*Windows*
-- Download Affdex SDK [from here](https://knowledge.affectiva.com/docs/getting-started-with-the-emotion-sdk-for-windows)
-- Install the SDK using MSI installer.
-- The additional dependencies get installed automatically by NuGet.
-
-*Ubuntu*
-- Download Affdex SDK [from here](https://knowledge.affectiva.com/docs/getting-started-with-the-affectiva-sdk-for-linux)
-
-```bashrc
-sudo apt-get install build-essential libopencv-dev libboost1.55-all-dev libcurl4-openssl uuid-dev cmake
-wget https://download.affectiva.com/linux/affdex-cpp-sdk-3.2-20-ubuntu-xenial-xerus-64bit.tar.gz
-mkdir $HOME/affdex-sdk
-tar -xzvf affdex-cpp-sdk-3.2-20-ubuntu-xenial-xerus-64bit.tar.gz -C $HOME/affdex-sdk
-export AFFDEX_DATA_DIR=$HOME/affdex-sdk/data
-git clone https://github.com/Affectiva/cpp-sdk-samples.git $HOME/sdk-samples
-mkdir $HOME/build
-cd $HOME/build
-cmake -DOpenCV_DIR=/usr/ -DBOOST_ROOT=/usr/ -DAFFDEX_DIR=$HOME/affdex-sdk $HOME/sdk-samples
-make
-export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/affdex-sdk/lib
-```
-
-*CentOS*
-- Download Affdex SDK [from here](https://knowledge.affectiva.com/docs/getting-started-with-the-affectiva-sdk-for-linux)
-
-```bashrc
-sudo yum install libcurl-devel.x86_64 libuuid-devel.x86_64 opencv-devel cmake.x86_64
-wget https://sourceforge.net/projects/boost/files/boost/1.55.0/boost_1_55_0.tar.gz/download -O boost_1_55_0.tar.gz
-tar -xzvf boost_1_55_0.tar.gz -C $HOME
-cd boost_1_55
-./bootstrap.sh --with-libraries=log,serialization,system,date_time,filesystem,regex,timer,chrono,thread,program_options
-sudo ./b2 link=static install
-wget https://download.affectiva.com/linux/affdex-cpp-sdk-3.2-2893-centos-7-64bit.tar.gz
-mkdir $HOME/affdex-sdk
-tar -xzvf affdex-cpp-sdk-3.2-2893-centos-7-64bit.tar.gz -C $HOME/affdex-sdk
-export AFFDEX_DATA_DIR=$HOME/affdex-sdk/data
-git clone https://github.com/Affectiva/cpp-sdk-samples.git $HOME/sdk-samples
-mkdir $HOME/build
-cd $HOME/build
-cmake -DOpenCV_DIR=/usr/ -DBOOST_ROOT=/usr/ -DAFFDEX_DIR=$HOME/affdex-sdk $HOME/sdk-samples
-make
-export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/affdex-sdk/lib
-```
-
-OpenCV-webcam-demo (c++)
-------------------
-
-Project for demoing the [FrameDetector class](https://knowledge.affectiva.com/docs/analyze-a-video-frame-stream-3). It grabs frames from the camera, analyzes them and displays the results on screen.
-
-The following command line arguments can be used to run it:
-
- -h [ --help ] Display this help message.
- -d [ --data ] arg (=data) Path to the data folder
- -r [ --resolution ] arg (=640 480) Resolution in pixels (2-values): width
- height
- --pfps arg (=30) Processing framerate.
- --cfps arg (=30) Camera capture framerate.
- --bufferLen arg (=30) process buffer size.
- --cid arg (=0) Camera ID.
- --faceMode arg (=0) Face detector mode (large faces vs small
- faces).
- --numFaces arg (=1) Number of faces to be tracked.
- --draw arg (=1) Draw metrics on screen.
-
-Video-demo (c++)
-----------
-
-Project for demoing the Windows SDK [VideoDetector class](https://knowledge.affectiva.com/docs/analyze-a-recorded-video-file) and [PhotoDetector class](https://knowledge.affectiva.com/docs/analyze-a-photo-4). It processs video or image files, displays the emotion metrics and exports the results in a csv file.
-
-The following command line arguments can be used to run it:
-
- -h [ --help ] Display this help message.
- -d [ --data ] arg (=data) Path to the data folder
- -i [ --input ] arg Video or photo file to process.
- --pfps arg (=30) Processing framerate.
- --draw arg (=1) Draw video on screen.
- --faceMode arg (=1) Face detector mode (large faces vs small
- faces).
- --numFaces arg (=1) Number of faces to be tracked.
- --loop arg (=0) Loop over the video being processed.
-
-
-For an example of how to use Affdex in a C# application .. please refer to [AffdexMe](https://github.com/affectiva/affdexme-win)
+`/home/crowd/build/opencv-webcam-demo/opencv-webcam-demo --data /home/crowd/affdex-sdk/data --faceMode 1 --numFaces 80 -o /home/crowd/output-backup/ --draw 0`
diff --git a/common/LoggingImageListener.hpp b/common/LoggingImageListener.hpp
new file mode 100644
index 0000000..84cb33b
--- /dev/null
+++ b/common/LoggingImageListener.hpp
@@ -0,0 +1,139 @@
+#pragma once
+
+
+#include
+#include
+#include
+#include
+#include
+#include
+#include