auto-accept/www/js/clipper_unminified.js

7626 lines
199 KiB
JavaScript

/*******************************************************************************
* *
* Author : Angus Johnson *
* Version : 6.4.2 *
* Date : 27 February 2017 *
* Website : http://www.angusj.com *
* Copyright : Angus Johnson 2010-2017 *
* *
* License: *
* Use, modification & distribution is subject to Boost Software License Ver 1. *
* http://www.boost.org/LICENSE_1_0.txt *
* *
* Attributions: *
* The code in this library is an extension of Bala Vatti's clipping algorithm: *
* "A generic solution to polygon clipping" *
* Communications of the ACM, Vol 35, Issue 7 (July 1992) pp 56-63. *
* http://portal.acm.org/citation.cfm?id=129906 *
* *
* Computer graphics and geometric modeling: implementation and algorithms *
* By Max K. Agoston *
* Springer; 1 edition (January 4, 2005) *
* http://books.google.com/books?q=vatti+clipping+agoston *
* *
* See also: *
* "Polygon Offsetting by Computing Winding Numbers" *
* Paper no. DETC2005-85513 pp. 565-575 *
* ASME 2005 International Design Engineering Technical Conferences *
* and Computers and Information in Engineering Conference (IDETC/CIE2005) *
* September 24-28, 2005 , Long Beach, California, USA *
* http://www.me.berkeley.edu/~mcmains/pubs/DAC05OffsetPolygon.pdf *
* *
*******************************************************************************/
/*******************************************************************************
* *
* Author : Timo *
* Version : 6.4.2.2 *
* Date : 8 September 2017 *
* *
* This is a translation of the C# Clipper library to Javascript. *
* Int128 struct of C# is implemented using JSBN of Tom Wu. *
* Because Javascript lacks support for 64-bit integers, the space *
* is a little more restricted than in C# version. *
* *
* C# version has support for coordinate space: *
* +-4611686018427387903 ( sqrt(2^127 -1)/2 ) *
* while Javascript version has support for space: *
* +-4503599627370495 ( sqrt(2^106 -1)/2 ) *
* *
* Tom Wu's JSBN proved to be the fastest big integer library: *
* http://jsperf.com/big-integer-library-test *
* *
* This class can be made simpler when (if ever) 64-bit integer support comes *
* or floating point Clipper is released. *
* *
*******************************************************************************/
/*******************************************************************************
* *
* Basic JavaScript BN library - subset useful for RSA encryption. *
* http://www-cs-students.stanford.edu/~tjw/jsbn/ *
* Copyright (c) 2005 Tom Wu *
* All Rights Reserved. *
* See "LICENSE" for details: *
* http://www-cs-students.stanford.edu/~tjw/jsbn/LICENSE *
* *
*******************************************************************************/
(function ()
{
"use strict";
var ClipperLib = {};
ClipperLib.version = '6.4.2.2';
//UseLines: Enables open path clipping. Adds a very minor cost to performance.
ClipperLib.use_lines = true;
//ClipperLib.use_xyz: adds a Z member to IntPoint. Adds a minor cost to performance.
ClipperLib.use_xyz = false;
var isNode = false;
if (typeof module !== 'undefined' && module.exports)
{
module.exports = ClipperLib;
isNode = true;
}
else
{
if (typeof (document) !== "undefined") window.ClipperLib = ClipperLib;
else self['ClipperLib'] = ClipperLib;
}
var navigator_appName;
if (!isNode)
{
var nav = navigator.userAgent.toString().toLowerCase();
navigator_appName = navigator.appName;
}
else
{
var nav = "chrome"; // Node.js uses Chrome's V8 engine
navigator_appName = "Netscape"; // Firefox, Chrome and Safari returns "Netscape", so Node.js should also
}
// Browser test to speedup performance critical functions
var browser = {};
if (nav.indexOf("chrome") != -1 && nav.indexOf("chromium") == -1) browser.chrome = 1;
else browser.chrome = 0;
if (nav.indexOf("chromium") != -1) browser.chromium = 1;
else browser.chromium = 0;
if (nav.indexOf("safari") != -1 && nav.indexOf("chrome") == -1 && nav.indexOf("chromium") == -1) browser.safari = 1;
else browser.safari = 0;
if (nav.indexOf("firefox") != -1) browser.firefox = 1;
else browser.firefox = 0;
if (nav.indexOf("firefox/17") != -1) browser.firefox17 = 1;
else browser.firefox17 = 0;
if (nav.indexOf("firefox/15") != -1) browser.firefox15 = 1;
else browser.firefox15 = 0;
if (nav.indexOf("firefox/3") != -1) browser.firefox3 = 1;
else browser.firefox3 = 0;
if (nav.indexOf("opera") != -1) browser.opera = 1;
else browser.opera = 0;
if (nav.indexOf("msie 10") != -1) browser.msie10 = 1;
else browser.msie10 = 0;
if (nav.indexOf("msie 9") != -1) browser.msie9 = 1;
else browser.msie9 = 0;
if (nav.indexOf("msie 8") != -1) browser.msie8 = 1;
else browser.msie8 = 0;
if (nav.indexOf("msie 7") != -1) browser.msie7 = 1;
else browser.msie7 = 0;
if (nav.indexOf("msie ") != -1) browser.msie = 1;
else browser.msie = 0;
ClipperLib.biginteger_used = null;
// Copyright (c) 2005 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Basic JavaScript BN library - subset useful for RSA encryption.
// Bits per digit
var dbits;
// JavaScript engine analysis
var canary = 0xdeadbeefcafe;
var j_lm = ((canary & 0xffffff) == 0xefcafe);
// (public) Constructor
/**
* @constructor
*/
function BigInteger(a, b, c)
{
// This test variable can be removed,
// but at least for performance tests it is useful piece of knowledge
// This is the only ClipperLib related variable in BigInteger library
ClipperLib.biginteger_used = 1;
if (a != null)
if ("number" == typeof a && "undefined" == typeof (b)) this.fromInt(a); // faster conversion
else if ("number" == typeof a) this.fromNumber(a, b, c);
else if (b == null && "string" != typeof a) this.fromString(a, 256);
else this.fromString(a, b);
}
// return new, unset BigInteger
function nbi()
{
return new BigInteger(null, undefined, undefined);
}
// am: Compute w_j += (x*this_i), propagate carries,
// c is initial carry, returns final carry.
// c < 3*dvalue, x < 2*dvalue, this_i < dvalue
// We need to select the fastest one that works in this environment.
// am1: use a single mult and divide to get the high bits,
// max digit bits should be 26 because
// max internal value = 2*dvalue^2-2*dvalue (< 2^53)
function am1(i, x, w, j, c, n)
{
while (--n >= 0)
{
var v = x * this[i++] + w[j] + c;
c = Math.floor(v / 0x4000000);
w[j++] = v & 0x3ffffff;
}
return c;
}
// am2 avoids a big mult-and-extract completely.
// Max digit bits should be <= 30 because we do bitwise ops
// on values up to 2*hdvalue^2-hdvalue-1 (< 2^31)
function am2(i, x, w, j, c, n)
{
var xl = x & 0x7fff,
xh = x >> 15;
while (--n >= 0)
{
var l = this[i] & 0x7fff;
var h = this[i++] >> 15;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x7fff) << 15) + w[j] + (c & 0x3fffffff);
c = (l >>> 30) + (m >>> 15) + xh * h + (c >>> 30);
w[j++] = l & 0x3fffffff;
}
return c;
}
// Alternately, set max digit bits to 28 since some
// browsers slow down when dealing with 32-bit numbers.
function am3(i, x, w, j, c, n)
{
var xl = x & 0x3fff,
xh = x >> 14;
while (--n >= 0)
{
var l = this[i] & 0x3fff;
var h = this[i++] >> 14;
var m = xh * l + h * xl;
l = xl * l + ((m & 0x3fff) << 14) + w[j] + c;
c = (l >> 28) + (m >> 14) + xh * h;
w[j++] = l & 0xfffffff;
}
return c;
}
if (j_lm && (navigator_appName == "Microsoft Internet Explorer"))
{
BigInteger.prototype.am = am2;
dbits = 30;
}
else if (j_lm && (navigator_appName != "Netscape"))
{
BigInteger.prototype.am = am1;
dbits = 26;
}
else
{ // Mozilla/Netscape seems to prefer am3
BigInteger.prototype.am = am3;
dbits = 28;
}
BigInteger.prototype.DB = dbits;
BigInteger.prototype.DM = ((1 << dbits) - 1);
BigInteger.prototype.DV = (1 << dbits);
var BI_FP = 52;
BigInteger.prototype.FV = Math.pow(2, BI_FP);
BigInteger.prototype.F1 = BI_FP - dbits;
BigInteger.prototype.F2 = 2 * dbits - BI_FP;
// Digit conversions
var BI_RM = "0123456789abcdefghijklmnopqrstuvwxyz";
var BI_RC = new Array();
var rr, vv;
rr = "0".charCodeAt(0);
for (vv = 0; vv <= 9; ++vv) BI_RC[rr++] = vv;
rr = "a".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
rr = "A".charCodeAt(0);
for (vv = 10; vv < 36; ++vv) BI_RC[rr++] = vv;
function int2char(n)
{
return BI_RM.charAt(n);
}
function intAt(s, i)
{
var c = BI_RC[s.charCodeAt(i)];
return (c == null) ? -1 : c;
}
// (protected) copy this to r
function bnpCopyTo(r)
{
for (var i = this.t - 1; i >= 0; --i) r[i] = this[i];
r.t = this.t;
r.s = this.s;
}
// (protected) set from integer value x, -DV <= x < DV
function bnpFromInt(x)
{
this.t = 1;
this.s = (x < 0) ? -1 : 0;
if (x > 0) this[0] = x;
else if (x < -1) this[0] = x + this.DV;
else this.t = 0;
}
// return bigint initialized to value
function nbv(i)
{
var r = nbi();
r.fromInt(i);
return r;
}
// (protected) set from string and radix
function bnpFromString(s, b)
{
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 256) k = 8; // byte array
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else
{
this.fromRadix(s, b);
return;
}
this.t = 0;
this.s = 0;
var i = s.length,
mi = false,
sh = 0;
while (--i >= 0)
{
var x = (k == 8) ? s[i] & 0xff : intAt(s, i);
if (x < 0)
{
if (s.charAt(i) == "-") mi = true;
continue;
}
mi = false;
if (sh == 0)
this[this.t++] = x;
else if (sh + k > this.DB)
{
this[this.t - 1] |= (x & ((1 << (this.DB - sh)) - 1)) << sh;
this[this.t++] = (x >> (this.DB - sh));
}
else
this[this.t - 1] |= x << sh;
sh += k;
if (sh >= this.DB) sh -= this.DB;
}
if (k == 8 && (s[0] & 0x80) != 0)
{
this.s = -1;
if (sh > 0) this[this.t - 1] |= ((1 << (this.DB - sh)) - 1) << sh;
}
this.clamp();
if (mi) BigInteger.ZERO.subTo(this, this);
}
// (protected) clamp off excess high words
function bnpClamp()
{
var c = this.s & this.DM;
while (this.t > 0 && this[this.t - 1] == c) --this.t;
}
// (public) return string representation in given radix
function bnToString(b)
{
if (this.s < 0) return "-" + this.negate().toString(b);
var k;
if (b == 16) k = 4;
else if (b == 8) k = 3;
else if (b == 2) k = 1;
else if (b == 32) k = 5;
else if (b == 4) k = 2;
else return this.toRadix(b);
var km = (1 << k) - 1,
d, m = false,
r = "",
i = this.t;
var p = this.DB - (i * this.DB) % k;
if (i-- > 0)
{
if (p < this.DB && (d = this[i] >> p) > 0)
{
m = true;
r = int2char(d);
}
while (i >= 0)
{
if (p < k)
{
d = (this[i] & ((1 << p) - 1)) << (k - p);
d |= this[--i] >> (p += this.DB - k);
}
else
{
d = (this[i] >> (p -= k)) & km;
if (p <= 0)
{
p += this.DB;
--i;
}
}
if (d > 0) m = true;
if (m) r += int2char(d);
}
}
return m ? r : "0";
}
// (public) -this
function bnNegate()
{
var r = nbi();
BigInteger.ZERO.subTo(this, r);
return r;
}
// (public) |this|
function bnAbs()
{
return (this.s < 0) ? this.negate() : this;
}
// (public) return + if this > a, - if this < a, 0 if equal
function bnCompareTo(a)
{
var r = this.s - a.s;
if (r != 0) return r;
var i = this.t;
r = i - a.t;
if (r != 0) return (this.s < 0) ? -r : r;
while (--i >= 0)
if ((r = this[i] - a[i]) != 0) return r;
return 0;
}
// returns bit length of the integer x
function nbits(x)
{
var r = 1,
t;
if ((t = x >>> 16) != 0)
{
x = t;
r += 16;
}
if ((t = x >> 8) != 0)
{
x = t;
r += 8;
}
if ((t = x >> 4) != 0)
{
x = t;
r += 4;
}
if ((t = x >> 2) != 0)
{
x = t;
r += 2;
}
if ((t = x >> 1) != 0)
{
x = t;
r += 1;
}
return r;
}
// (public) return the number of bits in "this"
function bnBitLength()
{
if (this.t <= 0) return 0;
return this.DB * (this.t - 1) + nbits(this[this.t - 1] ^ (this.s & this.DM));
}
// (protected) r = this << n*DB
function bnpDLShiftTo(n, r)
{
var i;
for (i = this.t - 1; i >= 0; --i) r[i + n] = this[i];
for (i = n - 1; i >= 0; --i) r[i] = 0;
r.t = this.t + n;
r.s = this.s;
}
// (protected) r = this >> n*DB
function bnpDRShiftTo(n, r)
{
for (var i = n; i < this.t; ++i) r[i - n] = this[i];
r.t = Math.max(this.t - n, 0);
r.s = this.s;
}
// (protected) r = this << n
function bnpLShiftTo(n, r)
{
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << cbs) - 1;
var ds = Math.floor(n / this.DB),
c = (this.s << bs) & this.DM,
i;
for (i = this.t - 1; i >= 0; --i)
{
r[i + ds + 1] = (this[i] >> cbs) | c;
c = (this[i] & bm) << bs;
}
for (i = ds - 1; i >= 0; --i) r[i] = 0;
r[ds] = c;
r.t = this.t + ds + 1;
r.s = this.s;
r.clamp();
}
// (protected) r = this >> n
function bnpRShiftTo(n, r)
{
r.s = this.s;
var ds = Math.floor(n / this.DB);
if (ds >= this.t)
{
r.t = 0;
return;
}
var bs = n % this.DB;
var cbs = this.DB - bs;
var bm = (1 << bs) - 1;
r[0] = this[ds] >> bs;
for (var i = ds + 1; i < this.t; ++i)
{
r[i - ds - 1] |= (this[i] & bm) << cbs;
r[i - ds] = this[i] >> bs;
}
if (bs > 0) r[this.t - ds - 1] |= (this.s & bm) << cbs;
r.t = this.t - ds;
r.clamp();
}
// (protected) r = this - a
function bnpSubTo(a, r)
{
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m)
{
c += this[i] - a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t)
{
c -= a.s;
while (i < this.t)
{
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else
{
c += this.s;
while (i < a.t)
{
c -= a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c -= a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c < -1) r[i++] = this.DV + c;
else if (c > 0) r[i++] = c;
r.t = i;
r.clamp();
}
// (protected) r = this * a, r != this,a (HAC 14.12)
// "this" should be the larger one if appropriate.
function bnpMultiplyTo(a, r)
{
var x = this.abs(),
y = a.abs();
var i = x.t;
r.t = i + y.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < y.t; ++i) r[i + x.t] = x.am(0, y[i], r, i, 0, x.t);
r.s = 0;
r.clamp();
if (this.s != a.s) BigInteger.ZERO.subTo(r, r);
}
// (protected) r = this^2, r != this (HAC 14.16)
function bnpSquareTo(r)
{
var x = this.abs();
var i = r.t = 2 * x.t;
while (--i >= 0) r[i] = 0;
for (i = 0; i < x.t - 1; ++i)
{
var c = x.am(i, x[i], r, 2 * i, 0, 1);
if ((r[i + x.t] += x.am(i + 1, 2 * x[i], r, 2 * i + 1, c, x.t - i - 1)) >= x.DV)
{
r[i + x.t] -= x.DV;
r[i + x.t + 1] = 1;
}
}
if (r.t > 0) r[r.t - 1] += x.am(i, x[i], r, 2 * i, 0, 1);
r.s = 0;
r.clamp();
}
// (protected) divide this by m, quotient and remainder to q, r (HAC 14.20)
// r != q, this != m. q or r may be null.
function bnpDivRemTo(m, q, r)
{
var pm = m.abs();
if (pm.t <= 0) return;
var pt = this.abs();
if (pt.t < pm.t)
{
if (q != null) q.fromInt(0);
if (r != null) this.copyTo(r);
return;
}
if (r == null) r = nbi();
var y = nbi(),
ts = this.s,
ms = m.s;
var nsh = this.DB - nbits(pm[pm.t - 1]); // normalize modulus
if (nsh > 0)
{
pm.lShiftTo(nsh, y);
pt.lShiftTo(nsh, r);
}
else
{
pm.copyTo(y);
pt.copyTo(r);
}
var ys = y.t;
var y0 = y[ys - 1];
if (y0 == 0) return;
var yt = y0 * (1 << this.F1) + ((ys > 1) ? y[ys - 2] >> this.F2 : 0);
var d1 = this.FV / yt,
d2 = (1 << this.F1) / yt,
e = 1 << this.F2;
var i = r.t,
j = i - ys,
t = (q == null) ? nbi() : q;
y.dlShiftTo(j, t);
if (r.compareTo(t) >= 0)
{
r[r.t++] = 1;
r.subTo(t, r);
}
BigInteger.ONE.dlShiftTo(ys, t);
t.subTo(y, y); // "negative" y so we can replace sub with am later
while (y.t < ys) y[y.t++] = 0;
while (--j >= 0)
{
// Estimate quotient digit
var qd = (r[--i] == y0) ? this.DM : Math.floor(r[i] * d1 + (r[i - 1] + e) * d2);
if ((r[i] += y.am(0, qd, r, j, 0, ys)) < qd)
{ // Try it out
y.dlShiftTo(j, t);
r.subTo(t, r);
while (r[i] < --qd) r.subTo(t, r);
}
}
if (q != null)
{
r.drShiftTo(ys, q);
if (ts != ms) BigInteger.ZERO.subTo(q, q);
}
r.t = ys;
r.clamp();
if (nsh > 0) r.rShiftTo(nsh, r); // Denormalize remainder
if (ts < 0) BigInteger.ZERO.subTo(r, r);
}
// (public) this mod a
function bnMod(a)
{
var r = nbi();
this.abs().divRemTo(a, null, r);
if (this.s < 0 && r.compareTo(BigInteger.ZERO) > 0) a.subTo(r, r);
return r;
}
// Modular reduction using "classic" algorithm
/**
* @constructor
*/
function Classic(m)
{
this.m = m;
}
function cConvert(x)
{
if (x.s < 0 || x.compareTo(this.m) >= 0) return x.mod(this.m);
else return x;
}
function cRevert(x)
{
return x;
}
function cReduce(x)
{
x.divRemTo(this.m, null, x);
}
function cMulTo(x, y, r)
{
x.multiplyTo(y, r);
this.reduce(r);
}
function cSqrTo(x, r)
{
x.squareTo(r);
this.reduce(r);
}
Classic.prototype.convert = cConvert;
Classic.prototype.revert = cRevert;
Classic.prototype.reduce = cReduce;
Classic.prototype.mulTo = cMulTo;
Classic.prototype.sqrTo = cSqrTo;
// (protected) return "-1/this % 2^DB"; useful for Mont. reduction
// justification:
// xy == 1 (mod m)
// xy = 1+km
// xy(2-xy) = (1+km)(1-km)
// x[y(2-xy)] = 1-k^2m^2
// x[y(2-xy)] == 1 (mod m^2)
// if y is 1/x mod m, then y(2-xy) is 1/x mod m^2
// should reduce x and y(2-xy) by m^2 at each step to keep size bounded.
// JS multiply "overflows" differently from C/C++, so care is needed here.
function bnpInvDigit()
{
if (this.t < 1) return 0;
var x = this[0];
if ((x & 1) == 0) return 0;
var y = x & 3; // y == 1/x mod 2^2
y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4
y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8
y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16
// last step - calculate inverse mod DV directly;
// assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints
y = (y * (2 - x * y % this.DV)) % this.DV; // y == 1/x mod 2^dbits
// we really want the negative inverse, and -DV < y < DV
return (y > 0) ? this.DV - y : -y;
}
// Montgomery reduction
/**
* @constructor
*/
function Montgomery(m)
{
this.m = m;
this.mp = m.invDigit();
this.mpl = this.mp & 0x7fff;
this.mph = this.mp >> 15;
this.um = (1 << (m.DB - 15)) - 1;
this.mt2 = 2 * m.t;
}
// xR mod m
function montConvert(x)
{
var r = nbi();
x.abs().dlShiftTo(this.m.t, r);
r.divRemTo(this.m, null, r);
if (x.s < 0 && r.compareTo(BigInteger.ZERO) > 0) this.m.subTo(r, r);
return r;
}
// x/R mod m
function montRevert(x)
{
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
// x = x/R mod m (HAC 14.32)
function montReduce(x)
{
while (x.t <= this.mt2) // pad x so am has enough room later
x[x.t++] = 0;
for (var i = 0; i < this.m.t; ++i)
{
// faster way of calculating u0 = x[i]*mp mod DV
var j = x[i] & 0x7fff;
var u0 = (j * this.mpl + (((j * this.mph + (x[i] >> 15) * this.mpl) & this.um) << 15)) & x.DM;
// use am to combine the multiply-shift-add into one call
j = i + this.m.t;
x[j] += this.m.am(0, u0, x, i, 0, this.m.t);
// propagate carry
while (x[j] >= x.DV)
{
x[j] -= x.DV;
x[++j]++;
}
}
x.clamp();
x.drShiftTo(this.m.t, x);
if (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
}
// r = "x^2/R mod m"; x != r
function montSqrTo(x, r)
{
x.squareTo(r);
this.reduce(r);
}
// r = "xy/R mod m"; x,y != r
function montMulTo(x, y, r)
{
x.multiplyTo(y, r);
this.reduce(r);
}
Montgomery.prototype.convert = montConvert;
Montgomery.prototype.revert = montRevert;
Montgomery.prototype.reduce = montReduce;
Montgomery.prototype.mulTo = montMulTo;
Montgomery.prototype.sqrTo = montSqrTo;
// (protected) true iff this is even
function bnpIsEven()
{
return ((this.t > 0) ? (this[0] & 1) : this.s) == 0;
}
// (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79)
function bnpExp(e, z)
{
if (e > 0xffffffff || e < 1) return BigInteger.ONE;
var r = nbi(),
r2 = nbi(),
g = z.convert(this),
i = nbits(e) - 1;
g.copyTo(r);
while (--i >= 0)
{
z.sqrTo(r, r2);
if ((e & (1 << i)) > 0) z.mulTo(r2, g, r);
else
{
var t = r;
r = r2;
r2 = t;
}
}
return z.revert(r);
}
// (public) this^e % m, 0 <= e < 2^32
function bnModPowInt(e, m)
{
var z;
if (e < 256 || m.isEven()) z = new Classic(m);
else z = new Montgomery(m);
return this.exp(e, z);
}
// protected
BigInteger.prototype.copyTo = bnpCopyTo;
BigInteger.prototype.fromInt = bnpFromInt;
BigInteger.prototype.fromString = bnpFromString;
BigInteger.prototype.clamp = bnpClamp;
BigInteger.prototype.dlShiftTo = bnpDLShiftTo;
BigInteger.prototype.drShiftTo = bnpDRShiftTo;
BigInteger.prototype.lShiftTo = bnpLShiftTo;
BigInteger.prototype.rShiftTo = bnpRShiftTo;
BigInteger.prototype.subTo = bnpSubTo;
BigInteger.prototype.multiplyTo = bnpMultiplyTo;
BigInteger.prototype.squareTo = bnpSquareTo;
BigInteger.prototype.divRemTo = bnpDivRemTo;
BigInteger.prototype.invDigit = bnpInvDigit;
BigInteger.prototype.isEven = bnpIsEven;
BigInteger.prototype.exp = bnpExp;
// public
BigInteger.prototype.toString = bnToString;
BigInteger.prototype.negate = bnNegate;
BigInteger.prototype.abs = bnAbs;
BigInteger.prototype.compareTo = bnCompareTo;
BigInteger.prototype.bitLength = bnBitLength;
BigInteger.prototype.mod = bnMod;
BigInteger.prototype.modPowInt = bnModPowInt;
// "constants"
BigInteger.ZERO = nbv(0);
BigInteger.ONE = nbv(1);
// Copyright (c) 2005-2009 Tom Wu
// All Rights Reserved.
// See "LICENSE" for details.
// Extended JavaScript BN functions, required for RSA private ops.
// Version 1.1: new BigInteger("0", 10) returns "proper" zero
// Version 1.2: square() API, isProbablePrime fix
// (public)
function bnClone()
{
var r = nbi();
this.copyTo(r);
return r;
}
// (public) return value as integer
function bnIntValue()
{
if (this.s < 0)
{
if (this.t == 1) return this[0] - this.DV;
else if (this.t == 0) return -1;
}
else if (this.t == 1) return this[0];
else if (this.t == 0) return 0;
// assumes 16 < DB < 32
return ((this[1] & ((1 << (32 - this.DB)) - 1)) << this.DB) | this[0];
}
// (public) return value as byte
function bnByteValue()
{
return (this.t == 0) ? this.s : (this[0] << 24) >> 24;
}
// (public) return value as short (assumes DB>=16)
function bnShortValue()
{
return (this.t == 0) ? this.s : (this[0] << 16) >> 16;
}
// (protected) return x s.t. r^x < DV
function bnpChunkSize(r)
{
return Math.floor(Math.LN2 * this.DB / Math.log(r));
}
// (public) 0 if this == 0, 1 if this > 0
function bnSigNum()
{
if (this.s < 0) return -1;
else if (this.t <= 0 || (this.t == 1 && this[0] <= 0)) return 0;
else return 1;
}
// (protected) convert to radix string
function bnpToRadix(b)
{
if (b == null) b = 10;
if (this.signum() == 0 || b < 2 || b > 36) return "0";
var cs = this.chunkSize(b);
var a = Math.pow(b, cs);
var d = nbv(a),
y = nbi(),
z = nbi(),
r = "";
this.divRemTo(d, y, z);
while (y.signum() > 0)
{
r = (a + z.intValue()).toString(b).substr(1) + r;
y.divRemTo(d, y, z);
}
return z.intValue().toString(b) + r;
}
// (protected) convert from radix string
function bnpFromRadix(s, b)
{
this.fromInt(0);
if (b == null) b = 10;
var cs = this.chunkSize(b);
var d = Math.pow(b, cs),
mi = false,
j = 0,
w = 0;
for (var i = 0; i < s.length; ++i)
{
var x = intAt(s, i);
if (x < 0)
{
if (s.charAt(i) == "-" && this.signum() == 0) mi = true;
continue;
}
w = b * w + x;
if (++j >= cs)
{
this.dMultiply(d);
this.dAddOffset(w, 0);
j = 0;
w = 0;
}
}
if (j > 0)
{
this.dMultiply(Math.pow(b, j));
this.dAddOffset(w, 0);
}
if (mi) BigInteger.ZERO.subTo(this, this);
}
// (protected) alternate constructor
function bnpFromNumber(a, b, c)
{
if ("number" == typeof b)
{
// new BigInteger(int,int,RNG)
if (a < 2) this.fromInt(1);
else
{
this.fromNumber(a, c);
if (!this.testBit(a - 1)) // force MSB set
this.bitwiseTo(BigInteger.ONE.shiftLeft(a - 1), op_or, this);
if (this.isEven()) this.dAddOffset(1, 0); // force odd
while (!this.isProbablePrime(b))
{
this.dAddOffset(2, 0);
if (this.bitLength() > a) this.subTo(BigInteger.ONE.shiftLeft(a - 1), this);
}
}
}
else
{
// new BigInteger(int,RNG)
var x = new Array(),
t = a & 7;
x.length = (a >> 3) + 1;
b.nextBytes(x);
if (t > 0) x[0] &= ((1 << t) - 1);
else x[0] = 0;
this.fromString(x, 256);
}
}
// (public) convert to bigendian byte array
function bnToByteArray()
{
var i = this.t,
r = new Array();
r[0] = this.s;
var p = this.DB - (i * this.DB) % 8,
d, k = 0;
if (i-- > 0)
{
if (p < this.DB && (d = this[i] >> p) != (this.s & this.DM) >> p)
r[k++] = d | (this.s << (this.DB - p));
while (i >= 0)
{
if (p < 8)
{
d = (this[i] & ((1 << p) - 1)) << (8 - p);
d |= this[--i] >> (p += this.DB - 8);
}
else
{
d = (this[i] >> (p -= 8)) & 0xff;
if (p <= 0)
{
p += this.DB;
--i;
}
}
if ((d & 0x80) != 0) d |= -256;
if (k == 0 && (this.s & 0x80) != (d & 0x80)) ++k;
if (k > 0 || d != this.s) r[k++] = d;
}
}
return r;
}
function bnEquals(a)
{
return (this.compareTo(a) == 0);
}
function bnMin(a)
{
return (this.compareTo(a) < 0) ? this : a;
}
function bnMax(a)
{
return (this.compareTo(a) > 0) ? this : a;
}
// (protected) r = this op a (bitwise)
function bnpBitwiseTo(a, op, r)
{
var i, f, m = Math.min(a.t, this.t);
for (i = 0; i < m; ++i) r[i] = op(this[i], a[i]);
if (a.t < this.t)
{
f = a.s & this.DM;
for (i = m; i < this.t; ++i) r[i] = op(this[i], f);
r.t = this.t;
}
else
{
f = this.s & this.DM;
for (i = m; i < a.t; ++i) r[i] = op(f, a[i]);
r.t = a.t;
}
r.s = op(this.s, a.s);
r.clamp();
}
// (public) this & a
function op_and(x, y)
{
return x & y;
}
function bnAnd(a)
{
var r = nbi();
this.bitwiseTo(a, op_and, r);
return r;
}
// (public) this | a
function op_or(x, y)
{
return x | y;
}
function bnOr(a)
{
var r = nbi();
this.bitwiseTo(a, op_or, r);
return r;
}
// (public) this ^ a
function op_xor(x, y)
{
return x ^ y;
}
function bnXor(a)
{
var r = nbi();
this.bitwiseTo(a, op_xor, r);
return r;
}
// (public) this & ~a
function op_andnot(x, y)
{
return x & ~y;
}
function bnAndNot(a)
{
var r = nbi();
this.bitwiseTo(a, op_andnot, r);
return r;
}
// (public) ~this
function bnNot()
{
var r = nbi();
for (var i = 0; i < this.t; ++i) r[i] = this.DM & ~this[i];
r.t = this.t;
r.s = ~this.s;
return r;
}
// (public) this << n
function bnShiftLeft(n)
{
var r = nbi();
if (n < 0) this.rShiftTo(-n, r);
else this.lShiftTo(n, r);
return r;
}
// (public) this >> n
function bnShiftRight(n)
{
var r = nbi();
if (n < 0) this.lShiftTo(-n, r);
else this.rShiftTo(n, r);
return r;
}
// return index of lowest 1-bit in x, x < 2^31
function lbit(x)
{
if (x == 0) return -1;
var r = 0;
if ((x & 0xffff) == 0)
{
x >>= 16;
r += 16;
}
if ((x & 0xff) == 0)
{
x >>= 8;
r += 8;
}
if ((x & 0xf) == 0)
{
x >>= 4;
r += 4;
}
if ((x & 3) == 0)
{
x >>= 2;
r += 2;
}
if ((x & 1) == 0) ++r;
return r;
}
// (public) returns index of lowest 1-bit (or -1 if none)
function bnGetLowestSetBit()
{
for (var i = 0; i < this.t; ++i)
if (this[i] != 0) return i * this.DB + lbit(this[i]);
if (this.s < 0) return this.t * this.DB;
return -1;
}
// return number of 1 bits in x
function cbit(x)
{
var r = 0;
while (x != 0)
{
x &= x - 1;
++r;
}
return r;
}
// (public) return number of set bits
function bnBitCount()
{
var r = 0,
x = this.s & this.DM;
for (var i = 0; i < this.t; ++i) r += cbit(this[i] ^ x);
return r;
}
// (public) true iff nth bit is set
function bnTestBit(n)
{
var j = Math.floor(n / this.DB);
if (j >= this.t) return (this.s != 0);
return ((this[j] & (1 << (n % this.DB))) != 0);
}
// (protected) this op (1<<n)
function bnpChangeBit(n, op)
{
var r = BigInteger.ONE.shiftLeft(n);
this.bitwiseTo(r, op, r);
return r;
}
// (public) this | (1<<n)
function bnSetBit(n)
{
return this.changeBit(n, op_or);
}
// (public) this & ~(1<<n)
function bnClearBit(n)
{
return this.changeBit(n, op_andnot);
}
// (public) this ^ (1<<n)
function bnFlipBit(n)
{
return this.changeBit(n, op_xor);
}
// (protected) r = this + a
function bnpAddTo(a, r)
{
var i = 0,
c = 0,
m = Math.min(a.t, this.t);
while (i < m)
{
c += this[i] + a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
if (a.t < this.t)
{
c += a.s;
while (i < this.t)
{
c += this[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += this.s;
}
else
{
c += this.s;
while (i < a.t)
{
c += a[i];
r[i++] = c & this.DM;
c >>= this.DB;
}
c += a.s;
}
r.s = (c < 0) ? -1 : 0;
if (c > 0) r[i++] = c;
else if (c < -1) r[i++] = this.DV + c;
r.t = i;
r.clamp();
}
// (public) this + a
function bnAdd(a)
{
var r = nbi();
this.addTo(a, r);
return r;
}
// (public) this - a
function bnSubtract(a)
{
var r = nbi();
this.subTo(a, r);
return r;
}
// (public) this * a
function bnMultiply(a)
{
var r = nbi();
this.multiplyTo(a, r);
return r;
}
// (public) this^2
function bnSquare()
{
var r = nbi();
this.squareTo(r);
return r;
}
// (public) this / a
function bnDivide(a)
{
var r = nbi();
this.divRemTo(a, r, null);
return r;
}
// (public) this % a
function bnRemainder(a)
{
var r = nbi();
this.divRemTo(a, null, r);
return r;
}
// (public) [this/a,this%a]
function bnDivideAndRemainder(a)
{
var q = nbi(),
r = nbi();
this.divRemTo(a, q, r);
return new Array(q, r);
}
// (protected) this *= n, this >= 0, 1 < n < DV
function bnpDMultiply(n)
{
this[this.t] = this.am(0, n - 1, this, 0, 0, this.t);
++this.t;
this.clamp();
}
// (protected) this += n << w words, this >= 0
function bnpDAddOffset(n, w)
{
if (n == 0) return;
while (this.t <= w) this[this.t++] = 0;
this[w] += n;
while (this[w] >= this.DV)
{
this[w] -= this.DV;
if (++w >= this.t) this[this.t++] = 0;
++this[w];
}
}
// A "null" reducer
/**
* @constructor
*/
function NullExp()
{}
function nNop(x)
{
return x;
}
function nMulTo(x, y, r)
{
x.multiplyTo(y, r);
}
function nSqrTo(x, r)
{
x.squareTo(r);
}
NullExp.prototype.convert = nNop;
NullExp.prototype.revert = nNop;
NullExp.prototype.mulTo = nMulTo;
NullExp.prototype.sqrTo = nSqrTo;
// (public) this^e
function bnPow(e)
{
return this.exp(e, new NullExp());
}
// (protected) r = lower n words of "this * a", a.t <= n
// "this" should be the larger one if appropriate.
function bnpMultiplyLowerTo(a, n, r)
{
var i = Math.min(this.t + a.t, n);
r.s = 0; // assumes a,this >= 0
r.t = i;
while (i > 0) r[--i] = 0;
var j;
for (j = r.t - this.t; i < j; ++i) r[i + this.t] = this.am(0, a[i], r, i, 0, this.t);
for (j = Math.min(a.t, n); i < j; ++i) this.am(0, a[i], r, i, 0, n - i);
r.clamp();
}
// (protected) r = "this * a" without lower n words, n > 0
// "this" should be the larger one if appropriate.
function bnpMultiplyUpperTo(a, n, r)
{
--n;
var i = r.t = this.t + a.t - n;
r.s = 0; // assumes a,this >= 0
while (--i >= 0) r[i] = 0;
for (i = Math.max(n - this.t, 0); i < a.t; ++i)
r[this.t + i - n] = this.am(n - i, a[i], r, 0, 0, this.t + i - n);
r.clamp();
r.drShiftTo(1, r);
}
// Barrett modular reduction
/**
* @constructor
*/
function Barrett(m)
{
// setup Barrett
this.r2 = nbi();
this.q3 = nbi();
BigInteger.ONE.dlShiftTo(2 * m.t, this.r2);
this.mu = this.r2.divide(m);
this.m = m;
}
function barrettConvert(x)
{
if (x.s < 0 || x.t > 2 * this.m.t) return x.mod(this.m);
else if (x.compareTo(this.m) < 0) return x;
else
{
var r = nbi();
x.copyTo(r);
this.reduce(r);
return r;
}
}
function barrettRevert(x)
{
return x;
}
// x = x mod m (HAC 14.42)
function barrettReduce(x)
{
x.drShiftTo(this.m.t - 1, this.r2);
if (x.t > this.m.t + 1)
{
x.t = this.m.t + 1;
x.clamp();
}
this.mu.multiplyUpperTo(this.r2, this.m.t + 1, this.q3);
this.m.multiplyLowerTo(this.q3, this.m.t + 1, this.r2);
while (x.compareTo(this.r2) < 0) x.dAddOffset(1, this.m.t + 1);
x.subTo(this.r2, x);
while (x.compareTo(this.m) >= 0) x.subTo(this.m, x);
}
// r = x^2 mod m; x != r
function barrettSqrTo(x, r)
{
x.squareTo(r);
this.reduce(r);
}
// r = x*y mod m; x,y != r
function barrettMulTo(x, y, r)
{
x.multiplyTo(y, r);
this.reduce(r);
}
Barrett.prototype.convert = barrettConvert;
Barrett.prototype.revert = barrettRevert;
Barrett.prototype.reduce = barrettReduce;
Barrett.prototype.mulTo = barrettMulTo;
Barrett.prototype.sqrTo = barrettSqrTo;
// (public) this^e % m (HAC 14.85)
function bnModPow(e, m)
{
var i = e.bitLength(),
k, r = nbv(1),
z;
if (i <= 0) return r;
else if (i < 18) k = 1;
else if (i < 48) k = 3;
else if (i < 144) k = 4;
else if (i < 768) k = 5;
else k = 6;
if (i < 8)
z = new Classic(m);
else if (m.isEven())
z = new Barrett(m);
else
z = new Montgomery(m);
// precomputation
var g = new Array(),
n = 3,
k1 = k - 1,
km = (1 << k) - 1;
g[1] = z.convert(this);
if (k > 1)
{
var g2 = nbi();
z.sqrTo(g[1], g2);
while (n <= km)
{
g[n] = nbi();
z.mulTo(g2, g[n - 2], g[n]);
n += 2;
}
}
var j = e.t - 1,
w, is1 = true,
r2 = nbi(),
t;
i = nbits(e[j]) - 1;
while (j >= 0)
{
if (i >= k1) w = (e[j] >> (i - k1)) & km;
else
{
w = (e[j] & ((1 << (i + 1)) - 1)) << (k1 - i);
if (j > 0) w |= e[j - 1] >> (this.DB + i - k1);
}
n = k;
while ((w & 1) == 0)
{
w >>= 1;
--n;
}
if ((i -= n) < 0)
{
i += this.DB;
--j;
}
if (is1)
{ // ret == 1, don't bother squaring or multiplying it
g[w].copyTo(r);
is1 = false;
}
else
{
while (n > 1)
{
z.sqrTo(r, r2);
z.sqrTo(r2, r);
n -= 2;
}
if (n > 0) z.sqrTo(r, r2);
else
{
t = r;
r = r2;
r2 = t;
}
z.mulTo(r2, g[w], r);
}
while (j >= 0 && (e[j] & (1 << i)) == 0)
{
z.sqrTo(r, r2);
t = r;
r = r2;
r2 = t;
if (--i < 0)
{
i = this.DB - 1;
--j;
}
}
}
return z.revert(r);
}
// (public) gcd(this,a) (HAC 14.54)
function bnGCD(a)
{
var x = (this.s < 0) ? this.negate() : this.clone();
var y = (a.s < 0) ? a.negate() : a.clone();
if (x.compareTo(y) < 0)
{
var t = x;
x = y;
y = t;
}
var i = x.getLowestSetBit(),
g = y.getLowestSetBit();
if (g < 0) return x;
if (i < g) g = i;
if (g > 0)
{
x.rShiftTo(g, x);
y.rShiftTo(g, y);
}
while (x.signum() > 0)
{
if ((i = x.getLowestSetBit()) > 0) x.rShiftTo(i, x);
if ((i = y.getLowestSetBit()) > 0) y.rShiftTo(i, y);
if (x.compareTo(y) >= 0)
{
x.subTo(y, x);
x.rShiftTo(1, x);
}
else
{
y.subTo(x, y);
y.rShiftTo(1, y);
}
}
if (g > 0) y.lShiftTo(g, y);
return y;
}
// (protected) this % n, n < 2^26
function bnpModInt(n)
{
if (n <= 0) return 0;
var d = this.DV % n,
r = (this.s < 0) ? n - 1 : 0;
if (this.t > 0)
if (d == 0) r = this[0] % n;
else
for (var i = this.t - 1; i >= 0; --i) r = (d * r + this[i]) % n;
return r;
}
// (public) 1/this % m (HAC 14.61)
function bnModInverse(m)
{
var ac = m.isEven();
if ((this.isEven() && ac) || m.signum() == 0) return BigInteger.ZERO;
var u = m.clone(),
v = this.clone();
var a = nbv(1),
b = nbv(0),
c = nbv(0),
d = nbv(1);
while (u.signum() != 0)
{
while (u.isEven())
{
u.rShiftTo(1, u);
if (ac)
{
if (!a.isEven() || !b.isEven())
{
a.addTo(this, a);
b.subTo(m, b);
}
a.rShiftTo(1, a);
}
else if (!b.isEven()) b.subTo(m, b);
b.rShiftTo(1, b);
}
while (v.isEven())
{
v.rShiftTo(1, v);
if (ac)
{
if (!c.isEven() || !d.isEven())
{
c.addTo(this, c);
d.subTo(m, d);
}
c.rShiftTo(1, c);
}
else if (!d.isEven()) d.subTo(m, d);
d.rShiftTo(1, d);
}
if (u.compareTo(v) >= 0)
{
u.subTo(v, u);
if (ac) a.subTo(c, a);
b.subTo(d, b);
}
else
{
v.subTo(u, v);
if (ac) c.subTo(a, c);
d.subTo(b, d);
}
}
if (v.compareTo(BigInteger.ONE) != 0) return BigInteger.ZERO;
if (d.compareTo(m) >= 0) return d.subtract(m);
if (d.signum() < 0) d.addTo(m, d);
else return d;
if (d.signum() < 0) return d.add(m);
else return d;
}
var lowprimes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997];
var lplim = (1 << 26) / lowprimes[lowprimes.length - 1];
// (public) test primality with certainty >= 1-.5^t
function bnIsProbablePrime(t)
{
var i, x = this.abs();
if (x.t == 1 && x[0] <= lowprimes[lowprimes.length - 1])
{
for (i = 0; i < lowprimes.length; ++i)
if (x[0] == lowprimes[i]) return true;
return false;
}
if (x.isEven()) return false;
i = 1;
while (i < lowprimes.length)
{
var m = lowprimes[i],
j = i + 1;
while (j < lowprimes.length && m < lplim) m *= lowprimes[j++];
m = x.modInt(m);
while (i < j)
if (m % lowprimes[i++] == 0) return false;
}
return x.millerRabin(t);
}
// (protected) true if probably prime (HAC 4.24, Miller-Rabin)
function bnpMillerRabin(t)
{
var n1 = this.subtract(BigInteger.ONE);
var k = n1.getLowestSetBit();
if (k <= 0) return false;
var r = n1.shiftRight(k);
t = (t + 1) >> 1;
if (t > lowprimes.length) t = lowprimes.length;
var a = nbi();
for (var i = 0; i < t; ++i)
{
//Pick bases at random, instead of starting at 2
a.fromInt(lowprimes[Math.floor(Math.random() * lowprimes.length)]);
var y = a.modPow(r, this);
if (y.compareTo(BigInteger.ONE) != 0 && y.compareTo(n1) != 0)
{
var j = 1;
while (j++ < k && y.compareTo(n1) != 0)
{
y = y.modPowInt(2, this);
if (y.compareTo(BigInteger.ONE) == 0) return false;
}
if (y.compareTo(n1) != 0) return false;
}
}
return true;
}
// protected
BigInteger.prototype.chunkSize = bnpChunkSize;
BigInteger.prototype.toRadix = bnpToRadix;
BigInteger.prototype.fromRadix = bnpFromRadix;
BigInteger.prototype.fromNumber = bnpFromNumber;
BigInteger.prototype.bitwiseTo = bnpBitwiseTo;
BigInteger.prototype.changeBit = bnpChangeBit;
BigInteger.prototype.addTo = bnpAddTo;
BigInteger.prototype.dMultiply = bnpDMultiply;
BigInteger.prototype.dAddOffset = bnpDAddOffset;
BigInteger.prototype.multiplyLowerTo = bnpMultiplyLowerTo;
BigInteger.prototype.multiplyUpperTo = bnpMultiplyUpperTo;
BigInteger.prototype.modInt = bnpModInt;
BigInteger.prototype.millerRabin = bnpMillerRabin;
// public
BigInteger.prototype.clone = bnClone;
BigInteger.prototype.intValue = bnIntValue;
BigInteger.prototype.byteValue = bnByteValue;
BigInteger.prototype.shortValue = bnShortValue;
BigInteger.prototype.signum = bnSigNum;
BigInteger.prototype.toByteArray = bnToByteArray;
BigInteger.prototype.equals = bnEquals;
BigInteger.prototype.min = bnMin;
BigInteger.prototype.max = bnMax;
BigInteger.prototype.and = bnAnd;
BigInteger.prototype.or = bnOr;
BigInteger.prototype.xor = bnXor;
BigInteger.prototype.andNot = bnAndNot;
BigInteger.prototype.not = bnNot;
BigInteger.prototype.shiftLeft = bnShiftLeft;
BigInteger.prototype.shiftRight = bnShiftRight;
BigInteger.prototype.getLowestSetBit = bnGetLowestSetBit;
BigInteger.prototype.bitCount = bnBitCount;
BigInteger.prototype.testBit = bnTestBit;
BigInteger.prototype.setBit = bnSetBit;
BigInteger.prototype.clearBit = bnClearBit;
BigInteger.prototype.flipBit = bnFlipBit;
BigInteger.prototype.add = bnAdd;
BigInteger.prototype.subtract = bnSubtract;
BigInteger.prototype.multiply = bnMultiply;
BigInteger.prototype.divide = bnDivide;
BigInteger.prototype.remainder = bnRemainder;
BigInteger.prototype.divideAndRemainder = bnDivideAndRemainder;
BigInteger.prototype.modPow = bnModPow;
BigInteger.prototype.modInverse = bnModInverse;
BigInteger.prototype.pow = bnPow;
BigInteger.prototype.gcd = bnGCD;
BigInteger.prototype.isProbablePrime = bnIsProbablePrime;
// JSBN-specific extension
BigInteger.prototype.square = bnSquare;
var Int128 = BigInteger;
// BigInteger interfaces not implemented in jsbn:
// BigInteger(int signum, byte[] magnitude)
// double doubleValue()
// float floatValue()
// int hashCode()
// long longValue()
// static BigInteger valueOf(long val)
// Helper functions to make BigInteger functions callable with two parameters
// as in original C# Clipper
Int128.prototype.IsNegative = function ()
{
if (this.compareTo(Int128.ZERO) == -1) return true;
else return false;
};
Int128.op_Equality = function (val1, val2)
{
if (val1.compareTo(val2) == 0) return true;
else return false;
};
Int128.op_Inequality = function (val1, val2)
{
if (val1.compareTo(val2) != 0) return true;
else return false;
};
Int128.op_GreaterThan = function (val1, val2)
{
if (val1.compareTo(val2) > 0) return true;
else return false;
};
Int128.op_LessThan = function (val1, val2)
{
if (val1.compareTo(val2) < 0) return true;
else return false;
};
Int128.op_Addition = function (lhs, rhs)
{
return new Int128(lhs, undefined, undefined).add(new Int128(rhs, undefined, undefined));
};
Int128.op_Subtraction = function (lhs, rhs)
{
return new Int128(lhs, undefined, undefined).subtract(new Int128(rhs, undefined, undefined));
};
Int128.Int128Mul = function (lhs, rhs)
{
return new Int128(lhs, undefined, undefined).multiply(new Int128(rhs, undefined, undefined));
};
Int128.op_Division = function (lhs, rhs)
{
return lhs.divide(rhs);
};
Int128.prototype.ToDouble = function ()
{
return parseFloat(this.toString()); // This could be something faster
};
// end of Int128 section
/*
// Uncomment the following two lines if you want to use Int128 outside ClipperLib
if (typeof(document) !== "undefined") window.Int128 = Int128;
else self.Int128 = Int128;
*/
// ---------------------------------------------
// Here starts the actual Clipper library:
// Helper function to support Inheritance in Javascript
var Inherit = function (ce, ce2)
{
var p;
if (typeof (Object.getOwnPropertyNames) === 'undefined')
{
for (p in ce2.prototype)
if (typeof (ce.prototype[p]) === 'undefined' || ce.prototype[p] === Object.prototype[p]) ce.prototype[p] = ce2.prototype[p];
for (p in ce2)
if (typeof (ce[p]) === 'undefined') ce[p] = ce2[p];
ce.$baseCtor = ce2;
}
else
{
var props = Object.getOwnPropertyNames(ce2.prototype);
for (var i = 0; i < props.length; i++)
if (typeof (Object.getOwnPropertyDescriptor(ce.prototype, props[i])) === 'undefined') Object.defineProperty(ce.prototype, props[i], Object.getOwnPropertyDescriptor(ce2.prototype, props[i]));
for (p in ce2)
if (typeof (ce[p]) === 'undefined') ce[p] = ce2[p];
ce.$baseCtor = ce2;
}
};
/**
* @constructor
*/
ClipperLib.Path = function ()
{
return [];
};
ClipperLib.Path.prototype.push = Array.prototype.push;
/**
* @constructor
*/
ClipperLib.Paths = function ()
{
return []; // Was previously [[]], but caused problems when pushed
};
ClipperLib.Paths.prototype.push = Array.prototype.push;
// Preserves the calling way of original C# Clipper
// Is essential due to compatibility, because DoublePoint is public class in original C# version
/**
* @constructor
*/
ClipperLib.DoublePoint = function ()
{
var a = arguments;
this.X = 0;
this.Y = 0;
// public DoublePoint(DoublePoint dp)
// public DoublePoint(IntPoint ip)
if (a.length === 1)
{
this.X = a[0].X;
this.Y = a[0].Y;
}
else if (a.length === 2)
{
this.X = a[0];
this.Y = a[1];
}
}; // This is internal faster function when called without arguments
/**
* @constructor
*/
ClipperLib.DoublePoint0 = function ()
{
this.X = 0;
this.Y = 0;
};
ClipperLib.DoublePoint0.prototype = ClipperLib.DoublePoint.prototype;
// This is internal faster function when called with 1 argument (dp or ip)
/**
* @constructor
*/
ClipperLib.DoublePoint1 = function (dp)
{
this.X = dp.X;
this.Y = dp.Y;
};
ClipperLib.DoublePoint1.prototype = ClipperLib.DoublePoint.prototype;
// This is internal faster function when called with 2 arguments (x and y)
/**
* @constructor
*/
ClipperLib.DoublePoint2 = function (x, y)
{
this.X = x;
this.Y = y;
};
ClipperLib.DoublePoint2.prototype = ClipperLib.DoublePoint.prototype;
// PolyTree & PolyNode start
/**
* @suppress {missingProperties}
*/
ClipperLib.PolyNode = function ()
{
this.m_Parent = null;
this.m_polygon = new ClipperLib.Path();
this.m_Index = 0;
this.m_jointype = 0;
this.m_endtype = 0;
this.m_Childs = [];
this.IsOpen = false;
};
ClipperLib.PolyNode.prototype.IsHoleNode = function ()
{
var result = true;
var node = this.m_Parent;
while (node !== null)
{
result = !result;
node = node.m_Parent;
}
return result;
};
ClipperLib.PolyNode.prototype.ChildCount = function ()
{
return this.m_Childs.length;
};
ClipperLib.PolyNode.prototype.Contour = function ()
{
return this.m_polygon;
};
ClipperLib.PolyNode.prototype.AddChild = function (Child)
{
var cnt = this.m_Childs.length;
this.m_Childs.push(Child);
Child.m_Parent = this;
Child.m_Index = cnt;
};
ClipperLib.PolyNode.prototype.GetNext = function ()
{
if (this.m_Childs.length > 0)
return this.m_Childs[0];
else
return this.GetNextSiblingUp();
};
ClipperLib.PolyNode.prototype.GetNextSiblingUp = function ()
{
if (this.m_Parent === null)
return null;
else if (this.m_Index === this.m_Parent.m_Childs.length - 1)
return this.m_Parent.GetNextSiblingUp();
else
return this.m_Parent.m_Childs[this.m_Index + 1];
};
ClipperLib.PolyNode.prototype.Childs = function ()
{
return this.m_Childs;
};
ClipperLib.PolyNode.prototype.Parent = function ()
{
return this.m_Parent;
};
ClipperLib.PolyNode.prototype.IsHole = function ()
{
return this.IsHoleNode();
};
// PolyTree : PolyNode
/**
* @suppress {missingProperties}
* @constructor
*/
ClipperLib.PolyTree = function ()
{
this.m_AllPolys = [];
ClipperLib.PolyNode.call(this);
};
ClipperLib.PolyTree.prototype.Clear = function ()
{
for (var i = 0, ilen = this.m_AllPolys.length; i < ilen; i++)
this.m_AllPolys[i] = null;
this.m_AllPolys.length = 0;
this.m_Childs.length = 0;
};
ClipperLib.PolyTree.prototype.GetFirst = function ()
{
if (this.m_Childs.length > 0)
return this.m_Childs[0];
else
return null;
};
ClipperLib.PolyTree.prototype.Total = function ()
{
var result = this.m_AllPolys.length;
//with negative offsets, ignore the hidden outer polygon ...
if (result > 0 && this.m_Childs[0] !== this.m_AllPolys[0]) result--;
return result;
};
Inherit(ClipperLib.PolyTree, ClipperLib.PolyNode);
// PolyTree & PolyNode end
ClipperLib.Math_Abs_Int64 = ClipperLib.Math_Abs_Int32 = ClipperLib.Math_Abs_Double = function (a)
{
return Math.abs(a);
};
ClipperLib.Math_Max_Int32_Int32 = function (a, b)
{
return Math.max(a, b);
};
/*
-----------------------------------
cast_32 speedtest: http://jsperf.com/truncate-float-to-integer/2
-----------------------------------
*/
if (browser.msie || browser.opera || browser.safari) ClipperLib.Cast_Int32 = function (a)
{
return a | 0;
};
else ClipperLib.Cast_Int32 = function (a)
{ // eg. browser.chrome || browser.chromium || browser.firefox
return ~~a;
};
/*
--------------------------
cast_64 speedtests: http://jsperf.com/truncate-float-to-integer
Chrome: bitwise_not_floor
Firefox17: toInteger (typeof test)
IE9: bitwise_or_floor
IE7 and IE8: to_parseint
Chromium: to_floor_or_ceil
Firefox3: to_floor_or_ceil
Firefox15: to_floor_or_ceil
Opera: to_floor_or_ceil
Safari: to_floor_or_ceil
--------------------------
*/
if (typeof Number.toInteger === "undefined")
Number.toInteger = null;
if (browser.chrome) ClipperLib.Cast_Int64 = function (a)
{
if (a < -2147483648 || a > 2147483647)
return a < 0 ? Math.ceil(a) : Math.floor(a);
else return ~~a;
};
else if (browser.firefox && typeof (Number.toInteger) === "function") ClipperLib.Cast_Int64 = function (a)
{
return Number.toInteger(a);
};
else if (browser.msie7 || browser.msie8) ClipperLib.Cast_Int64 = function (a)
{
return parseInt(a, 10);
};
else if (browser.msie) ClipperLib.Cast_Int64 = function (a)
{
if (a < -2147483648 || a > 2147483647)
return a < 0 ? Math.ceil(a) : Math.floor(a);
return a | 0;
};
// eg. browser.chromium || browser.firefox || browser.opera || browser.safari
else ClipperLib.Cast_Int64 = function (a)
{
return a < 0 ? Math.ceil(a) : Math.floor(a);
};
ClipperLib.Clear = function (a)
{
a.length = 0;
};
//ClipperLib.MaxSteps = 64; // How many steps at maximum in arc in BuildArc() function
ClipperLib.PI = 3.141592653589793;
ClipperLib.PI2 = 2 * 3.141592653589793;
/**
* @constructor
*/
ClipperLib.IntPoint = function ()
{
var a = arguments,
alen = a.length;
this.X = 0;
this.Y = 0;
if (ClipperLib.use_xyz)
{
this.Z = 0;
if (alen === 3) // public IntPoint(cInt x, cInt y, cInt z = 0)
{
this.X = a[0];
this.Y = a[1];
this.Z = a[2];
}
else if (alen === 2) // public IntPoint(cInt x, cInt y)
{
this.X = a[0];
this.Y = a[1];
this.Z = 0;
}
else if (alen === 1)
{
if (a[0] instanceof ClipperLib.DoublePoint) // public IntPoint(DoublePoint dp)
{
var dp = a[0];
this.X = ClipperLib.Clipper.Round(dp.X);
this.Y = ClipperLib.Clipper.Round(dp.Y);
this.Z = 0;
}
else // public IntPoint(IntPoint pt)
{
var pt = a[0];
if (typeof (pt.Z) === "undefined") pt.Z = 0;
this.X = pt.X;
this.Y = pt.Y;
this.Z = pt.Z;
}
}
else // public IntPoint()
{
this.X = 0;
this.Y = 0;
this.Z = 0;
}
}
else // if (!ClipperLib.use_xyz)
{
if (alen === 2) // public IntPoint(cInt X, cInt Y)
{
this.X = a[0];
this.Y = a[1];
}
else if (alen === 1)
{
if (a[0] instanceof ClipperLib.DoublePoint) // public IntPoint(DoublePoint dp)
{
var dp = a[0];
this.X = ClipperLib.Clipper.Round(dp.X);
this.Y = ClipperLib.Clipper.Round(dp.Y);
}
else // public IntPoint(IntPoint pt)
{
var pt = a[0];
this.X = pt.X;
this.Y = pt.Y;
}
}
else // public IntPoint(IntPoint pt)
{
this.X = 0;
this.Y = 0;
}
}
};
ClipperLib.IntPoint.op_Equality = function (a, b)
{
//return a == b;
return a.X === b.X && a.Y === b.Y;
};
ClipperLib.IntPoint.op_Inequality = function (a, b)
{
//return a !== b;
return a.X !== b.X || a.Y !== b.Y;
};
/*
ClipperLib.IntPoint.prototype.Equals = function (obj)
{
if (obj === null)
return false;
if (obj instanceof ClipperLib.IntPoint)
{
var a = Cast(obj, ClipperLib.IntPoint);
return (this.X == a.X) && (this.Y == a.Y);
}
else
return false;
};
*/
/**
* @constructor
*/
ClipperLib.IntPoint0 = function ()
{
this.X = 0;
this.Y = 0;
if (ClipperLib.use_xyz)
this.Z = 0;
};
ClipperLib.IntPoint0.prototype = ClipperLib.IntPoint.prototype;
/**
* @constructor
*/
ClipperLib.IntPoint1 = function (pt)
{
this.X = pt.X;
this.Y = pt.Y;
if (ClipperLib.use_xyz)
{
if (typeof pt.Z === "undefined") this.Z = 0;
else this.Z = pt.Z;
}
};
ClipperLib.IntPoint1.prototype = ClipperLib.IntPoint.prototype;
/**
* @constructor
*/
ClipperLib.IntPoint1dp = function (dp)
{
this.X = ClipperLib.Clipper.Round(dp.X);
this.Y = ClipperLib.Clipper.Round(dp.Y);
if (ClipperLib.use_xyz)
this.Z = 0;
};
ClipperLib.IntPoint1dp.prototype = ClipperLib.IntPoint.prototype;
/**
* @constructor
*/
ClipperLib.IntPoint2 = function (x, y, z)
{
this.X = x;
this.Y = y;
if (ClipperLib.use_xyz)
{
if (typeof z === "undefined") this.Z = 0;
else this.Z = z;
}
};
ClipperLib.IntPoint2.prototype = ClipperLib.IntPoint.prototype;
/**
* @constructor
*/
ClipperLib.IntRect = function ()
{
var a = arguments,
alen = a.length;
if (alen === 4) // function (l, t, r, b)
{
this.left = a[0];
this.top = a[1];
this.right = a[2];
this.bottom = a[3];
}
else if (alen === 1) // function (ir)
{
var ir = a[0];
this.left = ir.left;
this.top = ir.top;
this.right = ir.right;
this.bottom = ir.bottom;
}
else // function ()
{
this.left = 0;
this.top = 0;
this.right = 0;
this.bottom = 0;
}
};
/**
* @constructor
*/
ClipperLib.IntRect0 = function ()
{
this.left = 0;
this.top = 0;
this.right = 0;
this.bottom = 0;
};
ClipperLib.IntRect0.prototype = ClipperLib.IntRect.prototype;
/**
* @constructor
*/
ClipperLib.IntRect1 = function (ir)
{
this.left = ir.left;
this.top = ir.top;
this.right = ir.right;
this.bottom = ir.bottom;
};
ClipperLib.IntRect1.prototype = ClipperLib.IntRect.prototype;
/**
* @constructor
*/
ClipperLib.IntRect4 = function (l, t, r, b)
{
this.left = l;
this.top = t;
this.right = r;
this.bottom = b;
};
ClipperLib.IntRect4.prototype = ClipperLib.IntRect.prototype;
ClipperLib.ClipType = {
ctIntersection: 0,
ctUnion: 1,
ctDifference: 2,
ctXor: 3
};
ClipperLib.PolyType = {
ptSubject: 0,
ptClip: 1
};
ClipperLib.PolyFillType = {
pftEvenOdd: 0,
pftNonZero: 1,
pftPositive: 2,
pftNegative: 3
};
ClipperLib.JoinType = {
jtSquare: 0,
jtRound: 1,
jtMiter: 2
};
ClipperLib.EndType = {
etOpenSquare: 0,
etOpenRound: 1,
etOpenButt: 2,
etClosedLine: 3,
etClosedPolygon: 4
};
ClipperLib.EdgeSide = {
esLeft: 0,
esRight: 1
};
ClipperLib.Direction = {
dRightToLeft: 0,
dLeftToRight: 1
};
/**
* @constructor
*/
ClipperLib.TEdge = function ()
{
this.Bot = new ClipperLib.IntPoint0();
this.Curr = new ClipperLib.IntPoint0(); //current (updated for every new scanbeam)
this.Top = new ClipperLib.IntPoint0();
this.Delta = new ClipperLib.IntPoint0();
this.Dx = 0;
this.PolyTyp = ClipperLib.PolyType.ptSubject;
this.Side = ClipperLib.EdgeSide.esLeft; //side only refers to current side of solution poly
this.WindDelta = 0; //1 or -1 depending on winding direction
this.WindCnt = 0;
this.WindCnt2 = 0; //winding count of the opposite polytype
this.OutIdx = 0;
this.Next = null;
this.Prev = null;
this.NextInLML = null;
this.NextInAEL = null;
this.PrevInAEL = null;
this.NextInSEL = null;
this.PrevInSEL = null;
};
/**
* @constructor
*/
ClipperLib.IntersectNode = function ()
{
this.Edge1 = null;
this.Edge2 = null;
this.Pt = new ClipperLib.IntPoint0();
};
ClipperLib.MyIntersectNodeSort = function () {};
ClipperLib.MyIntersectNodeSort.Compare = function (node1, node2)
{
var i = node2.Pt.Y - node1.Pt.Y;
if (i > 0) return 1;
else if (i < 0) return -1;
else return 0;
};
/**
* @constructor
*/
ClipperLib.LocalMinima = function ()
{
this.Y = 0;
this.LeftBound = null;
this.RightBound = null;
this.Next = null;
};
/**
* @constructor
*/
ClipperLib.Scanbeam = function ()
{
this.Y = 0;
this.Next = null;
};
/**
* @constructor
*/
ClipperLib.Maxima = function ()
{
this.X = 0;
this.Next = null;
this.Prev = null;
};
//OutRec: contains a path in the clipping solution. Edges in the AEL will
//carry a pointer to an OutRec when they are part of the clipping solution.
/**
* @constructor
*/
ClipperLib.OutRec = function ()
{
this.Idx = 0;
this.IsHole = false;
this.IsOpen = false;
this.FirstLeft = null; //see comments in clipper.pas
this.Pts = null;
this.BottomPt = null;
this.PolyNode = null;
};
/**
* @constructor
*/
ClipperLib.OutPt = function ()
{
this.Idx = 0;
this.Pt = new ClipperLib.IntPoint0();
this.Next = null;
this.Prev = null;
};
/**
* @constructor
*/
ClipperLib.Join = function ()
{
this.OutPt1 = null;
this.OutPt2 = null;
this.OffPt = new ClipperLib.IntPoint0();
};
ClipperLib.ClipperBase = function ()
{
this.m_MinimaList = null;
this.m_CurrentLM = null;
this.m_edges = new Array();
this.m_UseFullRange = false;
this.m_HasOpenPaths = false;
this.PreserveCollinear = false;
this.m_Scanbeam = null;
this.m_PolyOuts = null;
this.m_ActiveEdges = null;
};
// Ranges are in original C# too high for Javascript (in current state 2013 september):
// protected const double horizontal = -3.4E+38;
// internal const cInt loRange = 0x3FFFFFFF; // = 1073741823 = sqrt(2^63 -1)/2
// internal const cInt hiRange = 0x3FFFFFFFFFFFFFFFL; // = 4611686018427387903 = sqrt(2^127 -1)/2
// So had to adjust them to more suitable for Javascript.
// If JS some day supports truly 64-bit integers, then these ranges can be as in C#
// and biginteger library can be more simpler (as then 128bit can be represented as two 64bit numbers)
ClipperLib.ClipperBase.horizontal = -9007199254740992; //-2^53
ClipperLib.ClipperBase.Skip = -2;
ClipperLib.ClipperBase.Unassigned = -1;
ClipperLib.ClipperBase.tolerance = 1E-20;
ClipperLib.ClipperBase.loRange = 47453132; // sqrt(2^53 -1)/2
ClipperLib.ClipperBase.hiRange = 4503599627370495; // sqrt(2^106 -1)/2
ClipperLib.ClipperBase.near_zero = function (val)
{
return (val > -ClipperLib.ClipperBase.tolerance) && (val < ClipperLib.ClipperBase.tolerance);
};
ClipperLib.ClipperBase.IsHorizontal = function (e)
{
return e.Delta.Y === 0;
};
ClipperLib.ClipperBase.prototype.PointIsVertex = function (pt, pp)
{
var pp2 = pp;
do {
if (ClipperLib.IntPoint.op_Equality(pp2.Pt, pt))
return true;
pp2 = pp2.Next;
}
while (pp2 !== pp)
return false;
};
ClipperLib.ClipperBase.prototype.PointOnLineSegment = function (pt, linePt1, linePt2, UseFullRange)
{
if (UseFullRange)
return ((pt.X === linePt1.X) && (pt.Y === linePt1.Y)) ||
((pt.X === linePt2.X) && (pt.Y === linePt2.Y)) ||
(((pt.X > linePt1.X) === (pt.X < linePt2.X)) &&
((pt.Y > linePt1.Y) === (pt.Y < linePt2.Y)) &&
(Int128.op_Equality(Int128.Int128Mul((pt.X - linePt1.X), (linePt2.Y - linePt1.Y)),
Int128.Int128Mul((linePt2.X - linePt1.X), (pt.Y - linePt1.Y)))));
else
return ((pt.X === linePt1.X) && (pt.Y === linePt1.Y)) || ((pt.X === linePt2.X) && (pt.Y === linePt2.Y)) || (((pt.X > linePt1.X) === (pt.X < linePt2.X)) && ((pt.Y > linePt1.Y) === (pt.Y < linePt2.Y)) && ((pt.X - linePt1.X) * (linePt2.Y - linePt1.Y) === (linePt2.X - linePt1.X) * (pt.Y - linePt1.Y)));
};
ClipperLib.ClipperBase.prototype.PointOnPolygon = function (pt, pp, UseFullRange)
{
var pp2 = pp;
while (true)
{
if (this.PointOnLineSegment(pt, pp2.Pt, pp2.Next.Pt, UseFullRange))
return true;
pp2 = pp2.Next;
if (pp2 === pp)
break;
}
return false;
};
ClipperLib.ClipperBase.prototype.SlopesEqual = ClipperLib.ClipperBase.SlopesEqual = function ()
{
var a = arguments,
alen = a.length;
var e1, e2, pt1, pt2, pt3, pt4, UseFullRange;
if (alen === 3) // function (e1, e2, UseFullRange)
{
e1 = a[0];
e2 = a[1];
UseFullRange = a[2];
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(e1.Delta.Y, e2.Delta.X), Int128.Int128Mul(e1.Delta.X, e2.Delta.Y));
else
return ClipperLib.Cast_Int64((e1.Delta.Y) * (e2.Delta.X)) === ClipperLib.Cast_Int64((e1.Delta.X) * (e2.Delta.Y));
}
else if (alen === 4) // function (pt1, pt2, pt3, UseFullRange)
{
pt1 = a[0];
pt2 = a[1];
pt3 = a[2];
UseFullRange = a[3];
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(pt1.Y - pt2.Y, pt2.X - pt3.X), Int128.Int128Mul(pt1.X - pt2.X, pt2.Y - pt3.Y));
else
return ClipperLib.Cast_Int64((pt1.Y - pt2.Y) * (pt2.X - pt3.X)) - ClipperLib.Cast_Int64((pt1.X - pt2.X) * (pt2.Y - pt3.Y)) === 0;
}
else // function (pt1, pt2, pt3, pt4, UseFullRange)
{
pt1 = a[0];
pt2 = a[1];
pt3 = a[2];
pt4 = a[3];
UseFullRange = a[4];
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(pt1.Y - pt2.Y, pt3.X - pt4.X), Int128.Int128Mul(pt1.X - pt2.X, pt3.Y - pt4.Y));
else
return ClipperLib.Cast_Int64((pt1.Y - pt2.Y) * (pt3.X - pt4.X)) - ClipperLib.Cast_Int64((pt1.X - pt2.X) * (pt3.Y - pt4.Y)) === 0;
}
};
ClipperLib.ClipperBase.SlopesEqual3 = function (e1, e2, UseFullRange)
{
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(e1.Delta.Y, e2.Delta.X), Int128.Int128Mul(e1.Delta.X, e2.Delta.Y));
else
return ClipperLib.Cast_Int64((e1.Delta.Y) * (e2.Delta.X)) === ClipperLib.Cast_Int64((e1.Delta.X) * (e2.Delta.Y));
};
ClipperLib.ClipperBase.SlopesEqual4 = function (pt1, pt2, pt3, UseFullRange)
{
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(pt1.Y - pt2.Y, pt2.X - pt3.X), Int128.Int128Mul(pt1.X - pt2.X, pt2.Y - pt3.Y));
else
return ClipperLib.Cast_Int64((pt1.Y - pt2.Y) * (pt2.X - pt3.X)) - ClipperLib.Cast_Int64((pt1.X - pt2.X) * (pt2.Y - pt3.Y)) === 0;
};
ClipperLib.ClipperBase.SlopesEqual5 = function (pt1, pt2, pt3, pt4, UseFullRange)
{
if (UseFullRange)
return Int128.op_Equality(Int128.Int128Mul(pt1.Y - pt2.Y, pt3.X - pt4.X), Int128.Int128Mul(pt1.X - pt2.X, pt3.Y - pt4.Y));
else
return ClipperLib.Cast_Int64((pt1.Y - pt2.Y) * (pt3.X - pt4.X)) - ClipperLib.Cast_Int64((pt1.X - pt2.X) * (pt3.Y - pt4.Y)) === 0;
};
ClipperLib.ClipperBase.prototype.Clear = function ()
{
this.DisposeLocalMinimaList();
for (var i = 0, ilen = this.m_edges.length; i < ilen; ++i)
{
for (var j = 0, jlen = this.m_edges[i].length; j < jlen; ++j)
this.m_edges[i][j] = null;
ClipperLib.Clear(this.m_edges[i]);
}
ClipperLib.Clear(this.m_edges);
this.m_UseFullRange = false;
this.m_HasOpenPaths = false;
};
ClipperLib.ClipperBase.prototype.DisposeLocalMinimaList = function ()
{
while (this.m_MinimaList !== null)
{
var tmpLm = this.m_MinimaList.Next;
this.m_MinimaList = null;
this.m_MinimaList = tmpLm;
}
this.m_CurrentLM = null;
};
ClipperLib.ClipperBase.prototype.RangeTest = function (Pt, useFullRange)
{
if (useFullRange.Value)
{
if (Pt.X > ClipperLib.ClipperBase.hiRange || Pt.Y > ClipperLib.ClipperBase.hiRange || -Pt.X > ClipperLib.ClipperBase.hiRange || -Pt.Y > ClipperLib.ClipperBase.hiRange)
ClipperLib.Error("Coordinate outside allowed range in RangeTest().");
}
else if (Pt.X > ClipperLib.ClipperBase.loRange || Pt.Y > ClipperLib.ClipperBase.loRange || -Pt.X > ClipperLib.ClipperBase.loRange || -Pt.Y > ClipperLib.ClipperBase.loRange)
{
useFullRange.Value = true;
this.RangeTest(Pt, useFullRange);
}
};
ClipperLib.ClipperBase.prototype.InitEdge = function (e, eNext, ePrev, pt)
{
e.Next = eNext;
e.Prev = ePrev;
//e.Curr = pt;
e.Curr.X = pt.X;
e.Curr.Y = pt.Y;
if (ClipperLib.use_xyz) e.Curr.Z = pt.Z;
e.OutIdx = -1;
};
ClipperLib.ClipperBase.prototype.InitEdge2 = function (e, polyType)
{
if (e.Curr.Y >= e.Next.Curr.Y)
{
//e.Bot = e.Curr;
e.Bot.X = e.Curr.X;
e.Bot.Y = e.Curr.Y;
if (ClipperLib.use_xyz) e.Bot.Z = e.Curr.Z;
//e.Top = e.Next.Curr;
e.Top.X = e.Next.Curr.X;
e.Top.Y = e.Next.Curr.Y;
if (ClipperLib.use_xyz) e.Top.Z = e.Next.Curr.Z;
}
else
{
//e.Top = e.Curr;
e.Top.X = e.Curr.X;
e.Top.Y = e.Curr.Y;
if (ClipperLib.use_xyz) e.Top.Z = e.Curr.Z;
//e.Bot = e.Next.Curr;
e.Bot.X = e.Next.Curr.X;
e.Bot.Y = e.Next.Curr.Y;
if (ClipperLib.use_xyz) e.Bot.Z = e.Next.Curr.Z;
}
this.SetDx(e);
e.PolyTyp = polyType;
};
ClipperLib.ClipperBase.prototype.FindNextLocMin = function (E)
{
var E2;
for (;;)
{
while (ClipperLib.IntPoint.op_Inequality(E.Bot, E.Prev.Bot) || ClipperLib.IntPoint.op_Equality(E.Curr, E.Top))
E = E.Next;
if (E.Dx !== ClipperLib.ClipperBase.horizontal && E.Prev.Dx !== ClipperLib.ClipperBase.horizontal)
break;
while (E.Prev.Dx === ClipperLib.ClipperBase.horizontal)
E = E.Prev;
E2 = E;
while (E.Dx === ClipperLib.ClipperBase.horizontal)
E = E.Next;
if (E.Top.Y === E.Prev.Bot.Y)
continue;
//ie just an intermediate horz.
if (E2.Prev.Bot.X < E.Bot.X)
E = E2;
break;
}
return E;
};
ClipperLib.ClipperBase.prototype.ProcessBound = function (E, LeftBoundIsForward)
{
var EStart;
var Result = E;
var Horz;
if (Result.OutIdx === ClipperLib.ClipperBase.Skip)
{
//check if there are edges beyond the skip edge in the bound and if so
//create another LocMin and calling ProcessBound once more ...
E = Result;
if (LeftBoundIsForward)
{
while (E.Top.Y === E.Next.Bot.Y) E = E.Next;
while (E !== Result && E.Dx === ClipperLib.ClipperBase.horizontal) E = E.Prev;
}
else
{
while (E.Top.Y === E.Prev.Bot.Y) E = E.Prev;
while (E !== Result && E.Dx === ClipperLib.ClipperBase.horizontal) E = E.Next;
}
if (E === Result)
{
if (LeftBoundIsForward) Result = E.Next;
else Result = E.Prev;
}
else
{
//there are more edges in the bound beyond result starting with E
if (LeftBoundIsForward)
E = Result.Next;
else
E = Result.Prev;
var locMin = new ClipperLib.LocalMinima();
locMin.Next = null;
locMin.Y = E.Bot.Y;
locMin.LeftBound = null;
locMin.RightBound = E;
E.WindDelta = 0;
Result = this.ProcessBound(E, LeftBoundIsForward);
this.InsertLocalMinima(locMin);
}
return Result;
}
if (E.Dx === ClipperLib.ClipperBase.horizontal)
{
//We need to be careful with open paths because this may not be a
//true local minima (ie E may be following a skip edge).
//Also, consecutive horz. edges may start heading left before going right.
if (LeftBoundIsForward) EStart = E.Prev;
else EStart = E.Next;
if (EStart.Dx === ClipperLib.ClipperBase.horizontal) //ie an adjoining horizontal skip edge
{
if (EStart.Bot.X !== E.Bot.X && EStart.Top.X !== E.Bot.X)
this.ReverseHorizontal(E);
}
else if (EStart.Bot.X !== E.Bot.X)
this.ReverseHorizontal(E);
}
EStart = E;
if (LeftBoundIsForward)
{
while (Result.Top.Y === Result.Next.Bot.Y && Result.Next.OutIdx !== ClipperLib.ClipperBase.Skip)
Result = Result.Next;
if (Result.Dx === ClipperLib.ClipperBase.horizontal && Result.Next.OutIdx !== ClipperLib.ClipperBase.Skip)
{
//nb: at the top of a bound, horizontals are added to the bound
//only when the preceding edge attaches to the horizontal's left vertex
//unless a Skip edge is encountered when that becomes the top divide
Horz = Result;
while (Horz.Prev.Dx === ClipperLib.ClipperBase.horizontal)
Horz = Horz.Prev;
if (Horz.Prev.Top.X > Result.Next.Top.X)
Result = Horz.Prev;
}
while (E !== Result)
{
E.NextInLML = E.Next;
if (E.Dx === ClipperLib.ClipperBase.horizontal && E !== EStart && E.Bot.X !== E.Prev.Top.X)
this.ReverseHorizontal(E);
E = E.Next;
}
if (E.Dx === ClipperLib.ClipperBase.horizontal && E !== EStart && E.Bot.X !== E.Prev.Top.X)
this.ReverseHorizontal(E);
Result = Result.Next;
//move to the edge just beyond current bound
}
else
{
while (Result.Top.Y === Result.Prev.Bot.Y && Result.Prev.OutIdx !== ClipperLib.ClipperBase.Skip)
Result = Result.Prev;
if (Result.Dx === ClipperLib.ClipperBase.horizontal && Result.Prev.OutIdx !== ClipperLib.ClipperBase.Skip)
{
Horz = Result;
while (Horz.Next.Dx === ClipperLib.ClipperBase.horizontal)
Horz = Horz.Next;
if (Horz.Next.Top.X === Result.Prev.Top.X || Horz.Next.Top.X > Result.Prev.Top.X)
{
Result = Horz.Next;
}
}
while (E !== Result)
{
E.NextInLML = E.Prev;
if (E.Dx === ClipperLib.ClipperBase.horizontal && E !== EStart && E.Bot.X !== E.Next.Top.X)
this.ReverseHorizontal(E);
E = E.Prev;
}
if (E.Dx === ClipperLib.ClipperBase.horizontal && E !== EStart && E.Bot.X !== E.Next.Top.X)
this.ReverseHorizontal(E);
Result = Result.Prev;
//move to the edge just beyond current bound
}
return Result;
};
ClipperLib.ClipperBase.prototype.AddPath = function (pg, polyType, Closed)
{
if (ClipperLib.use_lines)
{
if (!Closed && polyType === ClipperLib.PolyType.ptClip)
ClipperLib.Error("AddPath: Open paths must be subject.");
}
else
{
if (!Closed)
ClipperLib.Error("AddPath: Open paths have been disabled.");
}
var highI = pg.length - 1;
if (Closed)
while (highI > 0 && (ClipperLib.IntPoint.op_Equality(pg[highI], pg[0])))
--highI;
while (highI > 0 && (ClipperLib.IntPoint.op_Equality(pg[highI], pg[highI - 1])))
--highI;
if ((Closed && highI < 2) || (!Closed && highI < 1))
return false;
//create a new edge array ...
var edges = new Array();
for (var i = 0; i <= highI; i++)
edges.push(new ClipperLib.TEdge());
var IsFlat = true;
//1. Basic (first) edge initialization ...
//edges[1].Curr = pg[1];
edges[1].Curr.X = pg[1].X;
edges[1].Curr.Y = pg[1].Y;
if (ClipperLib.use_xyz) edges[1].Curr.Z = pg[1].Z;
var $1 = {
Value: this.m_UseFullRange
};
this.RangeTest(pg[0], $1);
this.m_UseFullRange = $1.Value;
$1.Value = this.m_UseFullRange;
this.RangeTest(pg[highI], $1);
this.m_UseFullRange = $1.Value;
this.InitEdge(edges[0], edges[1], edges[highI], pg[0]);
this.InitEdge(edges[highI], edges[0], edges[highI - 1], pg[highI]);
for (var i = highI - 1; i >= 1; --i)
{
$1.Value = this.m_UseFullRange;
this.RangeTest(pg[i], $1);
this.m_UseFullRange = $1.Value;
this.InitEdge(edges[i], edges[i + 1], edges[i - 1], pg[i]);
}
var eStart = edges[0];
//2. Remove duplicate vertices, and (when closed) collinear edges ...
var E = eStart,
eLoopStop = eStart;
for (;;)
{
//console.log(E.Next, eStart);
//nb: allows matching start and end points when not Closed ...
if (E.Curr === E.Next.Curr && (Closed || E.Next !== eStart))
{
if (E === E.Next)
break;
if (E === eStart)
eStart = E.Next;
E = this.RemoveEdge(E);
eLoopStop = E;
continue;
}
if (E.Prev === E.Next)
break;
else if (Closed && ClipperLib.ClipperBase.SlopesEqual4(E.Prev.Curr, E.Curr, E.Next.Curr, this.m_UseFullRange) && (!this.PreserveCollinear || !this.Pt2IsBetweenPt1AndPt3(E.Prev.Curr, E.Curr, E.Next.Curr)))
{
//Collinear edges are allowed for open paths but in closed paths
//the default is to merge adjacent collinear edges into a single edge.
//However, if the PreserveCollinear property is enabled, only overlapping
//collinear edges (ie spikes) will be removed from closed paths.
if (E === eStart)
eStart = E.Next;
E = this.RemoveEdge(E);
E = E.Prev;
eLoopStop = E;
continue;
}
E = E.Next;
if ((E === eLoopStop) || (!Closed && E.Next === eStart)) break;
}
if ((!Closed && (E === E.Next)) || (Closed && (E.Prev === E.Next)))
return false;
if (!Closed)
{
this.m_HasOpenPaths = true;
eStart.Prev.OutIdx = ClipperLib.ClipperBase.Skip;
}
//3. Do second stage of edge initialization ...
E = eStart;
do {
this.InitEdge2(E, polyType);
E = E.Next;
if (IsFlat && E.Curr.Y !== eStart.Curr.Y)
IsFlat = false;
}
while (E !== eStart)
//4. Finally, add edge bounds to LocalMinima list ...
//Totally flat paths must be handled differently when adding them
//to LocalMinima list to avoid endless loops etc ...
if (IsFlat)
{
if (Closed)
return false;
E.Prev.OutIdx = ClipperLib.ClipperBase.Skip;
var locMin = new ClipperLib.LocalMinima();
locMin.Next = null;
locMin.Y = E.Bot.Y;
locMin.LeftBound = null;
locMin.RightBound = E;
locMin.RightBound.Side = ClipperLib.EdgeSide.esRight;
locMin.RightBound.WindDelta = 0;
for (;;)
{
if (E.Bot.X !== E.Prev.Top.X) this.ReverseHorizontal(E);
if (E.Next.OutIdx === ClipperLib.ClipperBase.Skip) break;
E.NextInLML = E.Next;
E = E.Next;
}
this.InsertLocalMinima(locMin);
this.m_edges.push(edges);
return true;
}
this.m_edges.push(edges);
var leftBoundIsForward;
var EMin = null;
//workaround to avoid an endless loop in the while loop below when
//open paths have matching start and end points ...
if (ClipperLib.IntPoint.op_Equality(E.Prev.Bot, E.Prev.Top))
E = E.Next;
for (;;)
{
E = this.FindNextLocMin(E);
if (E === EMin)
break;
else if (EMin === null)
EMin = E;
//E and E.Prev now share a local minima (left aligned if horizontal).
//Compare their slopes to find which starts which bound ...
var locMin = new ClipperLib.LocalMinima();
locMin.Next = null;
locMin.Y = E.Bot.Y;
if (E.Dx < E.Prev.Dx)
{
locMin.LeftBound = E.Prev;
locMin.RightBound = E;
leftBoundIsForward = false;
//Q.nextInLML = Q.prev
}
else
{
locMin.LeftBound = E;
locMin.RightBound = E.Prev;
leftBoundIsForward = true;
//Q.nextInLML = Q.next
}
locMin.LeftBound.Side = ClipperLib.EdgeSide.esLeft;
locMin.RightBound.Side = ClipperLib.EdgeSide.esRight;
if (!Closed)
locMin.LeftBound.WindDelta = 0;
else if (locMin.LeftBound.Next === locMin.RightBound)
locMin.LeftBound.WindDelta = -1;
else
locMin.LeftBound.WindDelta = 1;
locMin.RightBound.WindDelta = -locMin.LeftBound.WindDelta;
E = this.ProcessBound(locMin.LeftBound, leftBoundIsForward);
if (E.OutIdx === ClipperLib.ClipperBase.Skip)
E = this.ProcessBound(E, leftBoundIsForward);
var E2 = this.ProcessBound(locMin.RightBound, !leftBoundIsForward);
if (E2.OutIdx === ClipperLib.ClipperBase.Skip) E2 = this.ProcessBound(E2, !leftBoundIsForward);
if (locMin.LeftBound.OutIdx === ClipperLib.ClipperBase.Skip)
locMin.LeftBound = null;
else if (locMin.RightBound.OutIdx === ClipperLib.ClipperBase.Skip)
locMin.RightBound = null;
this.InsertLocalMinima(locMin);
if (!leftBoundIsForward)
E = E2;
}
return true;
};
ClipperLib.ClipperBase.prototype.AddPaths = function (ppg, polyType, closed)
{
// console.log("-------------------------------------------");
// console.log(JSON.stringify(ppg));
var result = false;
for (var i = 0, ilen = ppg.length; i < ilen; ++i)
if (this.AddPath(ppg[i], polyType, closed))
result = true;
return result;
};
ClipperLib.ClipperBase.prototype.Pt2IsBetweenPt1AndPt3 = function (pt1, pt2, pt3)
{
if ((ClipperLib.IntPoint.op_Equality(pt1, pt3)) || (ClipperLib.IntPoint.op_Equality(pt1, pt2)) || (ClipperLib.IntPoint.op_Equality(pt3, pt2)))
//if ((pt1 == pt3) || (pt1 == pt2) || (pt3 == pt2))
return false;
else if (pt1.X !== pt3.X)
return (pt2.X > pt1.X) === (pt2.X < pt3.X);
else
return (pt2.Y > pt1.Y) === (pt2.Y < pt3.Y);
};
ClipperLib.ClipperBase.prototype.RemoveEdge = function (e)
{
//removes e from double_linked_list (but without removing from memory)
e.Prev.Next = e.Next;
e.Next.Prev = e.Prev;
var result = e.Next;
e.Prev = null; //flag as removed (see ClipperBase.Clear)
return result;
};
ClipperLib.ClipperBase.prototype.SetDx = function (e)
{
e.Delta.X = (e.Top.X - e.Bot.X);
e.Delta.Y = (e.Top.Y - e.Bot.Y);
if (e.Delta.Y === 0) e.Dx = ClipperLib.ClipperBase.horizontal;
else e.Dx = (e.Delta.X) / (e.Delta.Y);
};
ClipperLib.ClipperBase.prototype.InsertLocalMinima = function (newLm)
{
if (this.m_MinimaList === null)
{
this.m_MinimaList = newLm;
}
else if (newLm.Y >= this.m_MinimaList.Y)
{
newLm.Next = this.m_MinimaList;
this.m_MinimaList = newLm;
}
else
{
var tmpLm = this.m_MinimaList;
while (tmpLm.Next !== null && (newLm.Y < tmpLm.Next.Y))
tmpLm = tmpLm.Next;
newLm.Next = tmpLm.Next;
tmpLm.Next = newLm;
}
};
ClipperLib.ClipperBase.prototype.PopLocalMinima = function (Y, current)
{
current.v = this.m_CurrentLM;
if (this.m_CurrentLM !== null && this.m_CurrentLM.Y === Y)
{
this.m_CurrentLM = this.m_CurrentLM.Next;
return true;
}
return false;
};
ClipperLib.ClipperBase.prototype.ReverseHorizontal = function (e)
{
//swap horizontal edges' top and bottom x's so they follow the natural
//progression of the bounds - ie so their xbots will align with the
//adjoining lower edge. [Helpful in the ProcessHorizontal() method.]
var tmp = e.Top.X;
e.Top.X = e.Bot.X;
e.Bot.X = tmp;
if (ClipperLib.use_xyz)
{
tmp = e.Top.Z;
e.Top.Z = e.Bot.Z;
e.Bot.Z = tmp;
}
};
ClipperLib.ClipperBase.prototype.Reset = function ()
{
this.m_CurrentLM = this.m_MinimaList;
if (this.m_CurrentLM === null) //ie nothing to process
return;
//reset all edges ...
this.m_Scanbeam = null;
var lm = this.m_MinimaList;
while (lm !== null)
{
this.InsertScanbeam(lm.Y);
var e = lm.LeftBound;
if (e !== null)
{
//e.Curr = e.Bot;
e.Curr.X = e.Bot.X;
e.Curr.Y = e.Bot.Y;
if (ClipperLib.use_xyz) e.Curr.Z = e.Bot.Z;
e.OutIdx = ClipperLib.ClipperBase.Unassigned;
}
e = lm.RightBound;
if (e !== null)
{
//e.Curr = e.Bot;
e.Curr.X = e.Bot.X;
e.Curr.Y = e.Bot.Y;
if (ClipperLib.use_xyz) e.Curr.Z = e.Bot.Z;
e.OutIdx = ClipperLib.ClipperBase.Unassigned;
}
lm = lm.Next;
}
this.m_ActiveEdges = null;
};
ClipperLib.ClipperBase.prototype.InsertScanbeam = function (Y)
{
//single-linked list: sorted descending, ignoring dups.
if (this.m_Scanbeam === null)
{
this.m_Scanbeam = new ClipperLib.Scanbeam();
this.m_Scanbeam.Next = null;
this.m_Scanbeam.Y = Y;
}
else if (Y > this.m_Scanbeam.Y)
{
var newSb = new ClipperLib.Scanbeam();
newSb.Y = Y;
newSb.Next = this.m_Scanbeam;
this.m_Scanbeam = newSb;
}
else
{
var sb2 = this.m_Scanbeam;
while (sb2.Next !== null && Y <= sb2.Next.Y)
{
sb2 = sb2.Next;
}
if (Y === sb2.Y)
{
return;
} //ie ignores duplicates
var newSb1 = new ClipperLib.Scanbeam();
newSb1.Y = Y;
newSb1.Next = sb2.Next;
sb2.Next = newSb1;
}
};
ClipperLib.ClipperBase.prototype.PopScanbeam = function (Y)
{
if (this.m_Scanbeam === null)
{
Y.v = 0;
return false;
}
Y.v = this.m_Scanbeam.Y;
this.m_Scanbeam = this.m_Scanbeam.Next;
return true;
};
ClipperLib.ClipperBase.prototype.LocalMinimaPending = function ()
{
return (this.m_CurrentLM !== null);
};
ClipperLib.ClipperBase.prototype.CreateOutRec = function ()
{
var result = new ClipperLib.OutRec();
result.Idx = ClipperLib.ClipperBase.Unassigned;
result.IsHole = false;
result.IsOpen = false;
result.FirstLeft = null;
result.Pts = null;
result.BottomPt = null;
result.PolyNode = null;
this.m_PolyOuts.push(result);
result.Idx = this.m_PolyOuts.length - 1;
return result;
};
ClipperLib.ClipperBase.prototype.DisposeOutRec = function (index)
{
var outRec = this.m_PolyOuts[index];
outRec.Pts = null;
outRec = null;
this.m_PolyOuts[index] = null;
};
ClipperLib.ClipperBase.prototype.UpdateEdgeIntoAEL = function (e)
{
if (e.NextInLML === null)
{
ClipperLib.Error("UpdateEdgeIntoAEL: invalid call");
}
var AelPrev = e.PrevInAEL;
var AelNext = e.NextInAEL;
e.NextInLML.OutIdx = e.OutIdx;
if (AelPrev !== null)
{
AelPrev.NextInAEL = e.NextInLML;
}
else
{
this.m_ActiveEdges = e.NextInLML;
}
if (AelNext !== null)
{
AelNext.PrevInAEL = e.NextInLML;
}
e.NextInLML.Side = e.Side;
e.NextInLML.WindDelta = e.WindDelta;
e.NextInLML.WindCnt = e.WindCnt;
e.NextInLML.WindCnt2 = e.WindCnt2;
e = e.NextInLML;
e.Curr.X = e.Bot.X;
e.Curr.Y = e.Bot.Y;
e.PrevInAEL = AelPrev;
e.NextInAEL = AelNext;
if (!ClipperLib.ClipperBase.IsHorizontal(e))
{
this.InsertScanbeam(e.Top.Y);
}
return e;
};
ClipperLib.ClipperBase.prototype.SwapPositionsInAEL = function (edge1, edge2)
{
//check that one or other edge hasn't already been removed from AEL ...
if (edge1.NextInAEL === edge1.PrevInAEL || edge2.NextInAEL === edge2.PrevInAEL)
{
return;
}
if (edge1.NextInAEL === edge2)
{
var next = edge2.NextInAEL;
if (next !== null)
{
next.PrevInAEL = edge1;
}
var prev = edge1.PrevInAEL;
if (prev !== null)
{
prev.NextInAEL = edge2;
}
edge2.PrevInAEL = prev;
edge2.NextInAEL = edge1;
edge1.PrevInAEL = edge2;
edge1.NextInAEL = next;
}
else if (edge2.NextInAEL === edge1)
{
var next1 = edge1.NextInAEL;
if (next1 !== null)
{
next1.PrevInAEL = edge2;
}
var prev1 = edge2.PrevInAEL;
if (prev1 !== null)
{
prev1.NextInAEL = edge1;
}
edge1.PrevInAEL = prev1;
edge1.NextInAEL = edge2;
edge2.PrevInAEL = edge1;
edge2.NextInAEL = next1;
}
else
{
var next2 = edge1.NextInAEL;
var prev2 = edge1.PrevInAEL;
edge1.NextInAEL = edge2.NextInAEL;
if (edge1.NextInAEL !== null)
{
edge1.NextInAEL.PrevInAEL = edge1;
}
edge1.PrevInAEL = edge2.PrevInAEL;
if (edge1.PrevInAEL !== null)
{
edge1.PrevInAEL.NextInAEL = edge1;
}
edge2.NextInAEL = next2;
if (edge2.NextInAEL !== null)
{
edge2.NextInAEL.PrevInAEL = edge2;
}
edge2.PrevInAEL = prev2;
if (edge2.PrevInAEL !== null)
{
edge2.PrevInAEL.NextInAEL = edge2;
}
}
if (edge1.PrevInAEL === null)
{
this.m_ActiveEdges = edge1;
}
else
{
if (edge2.PrevInAEL === null)
{
this.m_ActiveEdges = edge2;
}
}
};
ClipperLib.ClipperBase.prototype.DeleteFromAEL = function (e)
{
var AelPrev = e.PrevInAEL;
var AelNext = e.NextInAEL;
if (AelPrev === null && AelNext === null && e !== this.m_ActiveEdges)
{
return;
} //already deleted
if (AelPrev !== null)
{
AelPrev.NextInAEL = AelNext;
}
else
{
this.m_ActiveEdges = AelNext;
}
if (AelNext !== null)
{
AelNext.PrevInAEL = AelPrev;
}
e.NextInAEL = null;
e.PrevInAEL = null;
}
// public Clipper(int InitOptions = 0)
/**
* @suppress {missingProperties}
*/
ClipperLib.Clipper = function (InitOptions)
{
if (typeof (InitOptions) === "undefined") InitOptions = 0;
this.m_PolyOuts = null;
this.m_ClipType = ClipperLib.ClipType.ctIntersection;
this.m_Scanbeam = null;
this.m_Maxima = null;
this.m_ActiveEdges = null;
this.m_SortedEdges = null;
this.m_IntersectList = null;
this.m_IntersectNodeComparer = null;
this.m_ExecuteLocked = false;
this.m_ClipFillType = ClipperLib.PolyFillType.pftEvenOdd;
this.m_SubjFillType = ClipperLib.PolyFillType.pftEvenOdd;
this.m_Joins = null;
this.m_GhostJoins = null;
this.m_UsingPolyTree = false;
this.ReverseSolution = false;
this.StrictlySimple = false;
ClipperLib.ClipperBase.call(this);
this.m_Scanbeam = null;
this.m_Maxima = null;
this.m_ActiveEdges = null;
this.m_SortedEdges = null;
this.m_IntersectList = new Array();
this.m_IntersectNodeComparer = ClipperLib.MyIntersectNodeSort.Compare;
this.m_ExecuteLocked = false;
this.m_UsingPolyTree = false;
this.m_PolyOuts = new Array();
this.m_Joins = new Array();
this.m_GhostJoins = new Array();
this.ReverseSolution = (1 & InitOptions) !== 0;
this.StrictlySimple = (2 & InitOptions) !== 0;
this.PreserveCollinear = (4 & InitOptions) !== 0;
if (ClipperLib.use_xyz)
{
this.ZFillFunction = null; // function (IntPoint vert1, IntPoint vert2, ref IntPoint intersectPt);
}
};
ClipperLib.Clipper.ioReverseSolution = 1;
ClipperLib.Clipper.ioStrictlySimple = 2;
ClipperLib.Clipper.ioPreserveCollinear = 4;
ClipperLib.Clipper.prototype.Clear = function ()
{
if (this.m_edges.length === 0)
return;
//avoids problems with ClipperBase destructor
this.DisposeAllPolyPts();
ClipperLib.ClipperBase.prototype.Clear.call(this);
};
ClipperLib.Clipper.prototype.InsertMaxima = function (X)
{
//double-linked list: sorted ascending, ignoring dups.
var newMax = new ClipperLib.Maxima();
newMax.X = X;
if (this.m_Maxima === null)
{
this.m_Maxima = newMax;
this.m_Maxima.Next = null;
this.m_Maxima.Prev = null;
}
else if (X < this.m_Maxima.X)
{
newMax.Next = this.m_Maxima;
newMax.Prev = null;
this.m_Maxima = newMax;
}
else
{
var m = this.m_Maxima;
while (m.Next !== null && X >= m.Next.X)
{
m = m.Next;
}
if (X === m.X)
{
return;
} //ie ignores duplicates (& CG to clean up newMax)
//insert newMax between m and m.Next ...
newMax.Next = m.Next;
newMax.Prev = m;
if (m.Next !== null)
{
m.Next.Prev = newMax;
}
m.Next = newMax;
}
};
// ************************************
ClipperLib.Clipper.prototype.Execute = function ()
{
var a = arguments,
alen = a.length,
ispolytree = a[1] instanceof ClipperLib.PolyTree;
if (alen === 4 && !ispolytree) // function (clipType, solution, subjFillType, clipFillType)
{
var clipType = a[0],
solution = a[1],
subjFillType = a[2],
clipFillType = a[3];
if (this.m_ExecuteLocked)
return false;
if (this.m_HasOpenPaths)
ClipperLib.Error("Error: PolyTree struct is needed for open path clipping.");
this.m_ExecuteLocked = true;
ClipperLib.Clear(solution);
this.m_SubjFillType = subjFillType;
this.m_ClipFillType = clipFillType;
this.m_ClipType = clipType;
this.m_UsingPolyTree = false;
try
{
var succeeded = this.ExecuteInternal();
//build the return polygons ...
if (succeeded) this.BuildResult(solution);
}
finally
{
this.DisposeAllPolyPts();
this.m_ExecuteLocked = false;
}
return succeeded;
}
else if (alen === 4 && ispolytree) // function (clipType, polytree, subjFillType, clipFillType)
{
var clipType = a[0],
polytree = a[1],
subjFillType = a[2],
clipFillType = a[3];
if (this.m_ExecuteLocked)
return false;
this.m_ExecuteLocked = true;
this.m_SubjFillType = subjFillType;
this.m_ClipFillType = clipFillType;
this.m_ClipType = clipType;
this.m_UsingPolyTree = true;
try
{
var succeeded = this.ExecuteInternal();
//build the return polygons ...
if (succeeded) this.BuildResult2(polytree);
}
finally
{
this.DisposeAllPolyPts();
this.m_ExecuteLocked = false;
}
return succeeded;
}
else if (alen === 2 && !ispolytree) // function (clipType, solution)
{
var clipType = a[0],
solution = a[1];
return this.Execute(clipType, solution, ClipperLib.PolyFillType.pftEvenOdd, ClipperLib.PolyFillType.pftEvenOdd);
}
else if (alen === 2 && ispolytree) // function (clipType, polytree)
{
var clipType = a[0],
polytree = a[1];
return this.Execute(clipType, polytree, ClipperLib.PolyFillType.pftEvenOdd, ClipperLib.PolyFillType.pftEvenOdd);
}
};
ClipperLib.Clipper.prototype.FixHoleLinkage = function (outRec)
{
//skip if an outermost polygon or
//already already points to the correct FirstLeft ...
if (outRec.FirstLeft === null || (outRec.IsHole !== outRec.FirstLeft.IsHole && outRec.FirstLeft.Pts !== null))
return;
var orfl = outRec.FirstLeft;
while (orfl !== null && ((orfl.IsHole === outRec.IsHole) || orfl.Pts === null))
orfl = orfl.FirstLeft;
outRec.FirstLeft = orfl;
};
ClipperLib.Clipper.prototype.ExecuteInternal = function ()
{
try
{
this.Reset();
this.m_SortedEdges = null;
this.m_Maxima = null;
var botY = {},
topY = {};
if (!this.PopScanbeam(botY))
{
return false;
}
this.InsertLocalMinimaIntoAEL(botY.v);
while (this.PopScanbeam(topY) || this.LocalMinimaPending())
{
this.ProcessHorizontals();
this.m_GhostJoins.length = 0;
if (!this.ProcessIntersections(topY.v))
{
return false;
}
this.ProcessEdgesAtTopOfScanbeam(topY.v);
botY.v = topY.v;
this.InsertLocalMinimaIntoAEL(botY.v);
}
//fix orientations ...
var outRec, i, ilen;
//fix orientations ...
for (i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
outRec = this.m_PolyOuts[i];
if (outRec.Pts === null || outRec.IsOpen) continue;
if ((outRec.IsHole ^ this.ReverseSolution) == (this.Area$1(outRec) > 0))
this.ReversePolyPtLinks(outRec.Pts);
}
this.JoinCommonEdges();
for (i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
outRec = this.m_PolyOuts[i];
if (outRec.Pts === null)
continue;
else if (outRec.IsOpen)
this.FixupOutPolyline(outRec);
else
this.FixupOutPolygon(outRec);
}
if (this.StrictlySimple) this.DoSimplePolygons();
return true;
}
//catch { return false; }
finally
{
this.m_Joins.length = 0;
this.m_GhostJoins.length = 0;
}
};
ClipperLib.Clipper.prototype.DisposeAllPolyPts = function ()
{
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; ++i)
this.DisposeOutRec(i);
ClipperLib.Clear(this.m_PolyOuts);
};
ClipperLib.Clipper.prototype.AddJoin = function (Op1, Op2, OffPt)
{
var j = new ClipperLib.Join();
j.OutPt1 = Op1;
j.OutPt2 = Op2;
//j.OffPt = OffPt;
j.OffPt.X = OffPt.X;
j.OffPt.Y = OffPt.Y;
if (ClipperLib.use_xyz) j.OffPt.Z = OffPt.Z;
this.m_Joins.push(j);
};
ClipperLib.Clipper.prototype.AddGhostJoin = function (Op, OffPt)
{
var j = new ClipperLib.Join();
j.OutPt1 = Op;
//j.OffPt = OffPt;
j.OffPt.X = OffPt.X;
j.OffPt.Y = OffPt.Y;
if (ClipperLib.use_xyz) j.OffPt.Z = OffPt.Z;
this.m_GhostJoins.push(j);
};
//if (ClipperLib.use_xyz)
//{
ClipperLib.Clipper.prototype.SetZ = function (pt, e1, e2)
{
if (this.ZFillFunction !== null)
{
if (pt.Z !== 0 || this.ZFillFunction === null) return;
else if (ClipperLib.IntPoint.op_Equality(pt, e1.Bot)) pt.Z = e1.Bot.Z;
else if (ClipperLib.IntPoint.op_Equality(pt, e1.Top)) pt.Z = e1.Top.Z;
else if (ClipperLib.IntPoint.op_Equality(pt, e2.Bot)) pt.Z = e2.Bot.Z;
else if (ClipperLib.IntPoint.op_Equality(pt, e2.Top)) pt.Z = e2.Top.Z;
else this.ZFillFunction(e1.Bot, e1.Top, e2.Bot, e2.Top, pt);
}
};
//}
ClipperLib.Clipper.prototype.InsertLocalMinimaIntoAEL = function (botY)
{
var lm = {};
var lb;
var rb;
while (this.PopLocalMinima(botY, lm))
{
lb = lm.v.LeftBound;
rb = lm.v.RightBound;
var Op1 = null;
if (lb === null)
{
this.InsertEdgeIntoAEL(rb, null);
this.SetWindingCount(rb);
if (this.IsContributing(rb))
Op1 = this.AddOutPt(rb, rb.Bot);
}
else if (rb === null)
{
this.InsertEdgeIntoAEL(lb, null);
this.SetWindingCount(lb);
if (this.IsContributing(lb))
Op1 = this.AddOutPt(lb, lb.Bot);
this.InsertScanbeam(lb.Top.Y);
}
else
{
this.InsertEdgeIntoAEL(lb, null);
this.InsertEdgeIntoAEL(rb, lb);
this.SetWindingCount(lb);
rb.WindCnt = lb.WindCnt;
rb.WindCnt2 = lb.WindCnt2;
if (this.IsContributing(lb))
Op1 = this.AddLocalMinPoly(lb, rb, lb.Bot);
this.InsertScanbeam(lb.Top.Y);
}
if (rb !== null)
{
if (ClipperLib.ClipperBase.IsHorizontal(rb))
{
if (rb.NextInLML !== null)
{
this.InsertScanbeam(rb.NextInLML.Top.Y);
}
this.AddEdgeToSEL(rb);
}
else
{
this.InsertScanbeam(rb.Top.Y);
}
}
if (lb === null || rb === null) continue;
//if output polygons share an Edge with a horizontal rb, they'll need joining later ...
if (Op1 !== null && ClipperLib.ClipperBase.IsHorizontal(rb) && this.m_GhostJoins.length > 0 && rb.WindDelta !== 0)
{
for (var i = 0, ilen = this.m_GhostJoins.length; i < ilen; i++)
{
//if the horizontal Rb and a 'ghost' horizontal overlap, then convert
//the 'ghost' join to a real join ready for later ...
var j = this.m_GhostJoins[i];
if (this.HorzSegmentsOverlap(j.OutPt1.Pt.X, j.OffPt.X, rb.Bot.X, rb.Top.X))
this.AddJoin(j.OutPt1, Op1, j.OffPt);
}
}
if (lb.OutIdx >= 0 && lb.PrevInAEL !== null &&
lb.PrevInAEL.Curr.X === lb.Bot.X &&
lb.PrevInAEL.OutIdx >= 0 &&
ClipperLib.ClipperBase.SlopesEqual5(lb.PrevInAEL.Curr, lb.PrevInAEL.Top, lb.Curr, lb.Top, this.m_UseFullRange) &&
lb.WindDelta !== 0 && lb.PrevInAEL.WindDelta !== 0)
{
var Op2 = this.AddOutPt(lb.PrevInAEL, lb.Bot);
this.AddJoin(Op1, Op2, lb.Top);
}
if (lb.NextInAEL !== rb)
{
if (rb.OutIdx >= 0 && rb.PrevInAEL.OutIdx >= 0 &&
ClipperLib.ClipperBase.SlopesEqual5(rb.PrevInAEL.Curr, rb.PrevInAEL.Top, rb.Curr, rb.Top, this.m_UseFullRange) &&
rb.WindDelta !== 0 && rb.PrevInAEL.WindDelta !== 0)
{
var Op2 = this.AddOutPt(rb.PrevInAEL, rb.Bot);
this.AddJoin(Op1, Op2, rb.Top);
}
var e = lb.NextInAEL;
if (e !== null)
while (e !== rb)
{
//nb: For calculating winding counts etc, IntersectEdges() assumes
//that param1 will be to the right of param2 ABOVE the intersection ...
this.IntersectEdges(rb, e, lb.Curr);
//order important here
e = e.NextInAEL;
}
}
}
};
ClipperLib.Clipper.prototype.InsertEdgeIntoAEL = function (edge, startEdge)
{
if (this.m_ActiveEdges === null)
{
edge.PrevInAEL = null;
edge.NextInAEL = null;
this.m_ActiveEdges = edge;
}
else if (startEdge === null && this.E2InsertsBeforeE1(this.m_ActiveEdges, edge))
{
edge.PrevInAEL = null;
edge.NextInAEL = this.m_ActiveEdges;
this.m_ActiveEdges.PrevInAEL = edge;
this.m_ActiveEdges = edge;
}
else
{
if (startEdge === null)
startEdge = this.m_ActiveEdges;
while (startEdge.NextInAEL !== null && !this.E2InsertsBeforeE1(startEdge.NextInAEL, edge))
startEdge = startEdge.NextInAEL;
edge.NextInAEL = startEdge.NextInAEL;
if (startEdge.NextInAEL !== null)
startEdge.NextInAEL.PrevInAEL = edge;
edge.PrevInAEL = startEdge;
startEdge.NextInAEL = edge;
}
};
ClipperLib.Clipper.prototype.E2InsertsBeforeE1 = function (e1, e2)
{
if (e2.Curr.X === e1.Curr.X)
{
if (e2.Top.Y > e1.Top.Y)
return e2.Top.X < ClipperLib.Clipper.TopX(e1, e2.Top.Y);
else
return e1.Top.X > ClipperLib.Clipper.TopX(e2, e1.Top.Y);
}
else
return e2.Curr.X < e1.Curr.X;
};
ClipperLib.Clipper.prototype.IsEvenOddFillType = function (edge)
{
if (edge.PolyTyp === ClipperLib.PolyType.ptSubject)
return this.m_SubjFillType === ClipperLib.PolyFillType.pftEvenOdd;
else
return this.m_ClipFillType === ClipperLib.PolyFillType.pftEvenOdd;
};
ClipperLib.Clipper.prototype.IsEvenOddAltFillType = function (edge)
{
if (edge.PolyTyp === ClipperLib.PolyType.ptSubject)
return this.m_ClipFillType === ClipperLib.PolyFillType.pftEvenOdd;
else
return this.m_SubjFillType === ClipperLib.PolyFillType.pftEvenOdd;
};
ClipperLib.Clipper.prototype.IsContributing = function (edge)
{
var pft, pft2;
if (edge.PolyTyp === ClipperLib.PolyType.ptSubject)
{
pft = this.m_SubjFillType;
pft2 = this.m_ClipFillType;
}
else
{
pft = this.m_ClipFillType;
pft2 = this.m_SubjFillType;
}
switch (pft)
{
case ClipperLib.PolyFillType.pftEvenOdd:
if (edge.WindDelta === 0 && edge.WindCnt !== 1)
return false;
break;
case ClipperLib.PolyFillType.pftNonZero:
if (Math.abs(edge.WindCnt) !== 1)
return false;
break;
case ClipperLib.PolyFillType.pftPositive:
if (edge.WindCnt !== 1)
return false;
break;
default:
if (edge.WindCnt !== -1)
return false;
break;
}
switch (this.m_ClipType)
{
case ClipperLib.ClipType.ctIntersection:
switch (pft2)
{
case ClipperLib.PolyFillType.pftEvenOdd:
case ClipperLib.PolyFillType.pftNonZero:
return (edge.WindCnt2 !== 0);
case ClipperLib.PolyFillType.pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
case ClipperLib.ClipType.ctUnion:
switch (pft2)
{
case ClipperLib.PolyFillType.pftEvenOdd:
case ClipperLib.PolyFillType.pftNonZero:
return (edge.WindCnt2 === 0);
case ClipperLib.PolyFillType.pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
case ClipperLib.ClipType.ctDifference:
if (edge.PolyTyp === ClipperLib.PolyType.ptSubject)
switch (pft2)
{
case ClipperLib.PolyFillType.pftEvenOdd:
case ClipperLib.PolyFillType.pftNonZero:
return (edge.WindCnt2 === 0);
case ClipperLib.PolyFillType.pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
switch (pft2)
{
case ClipperLib.PolyFillType.pftEvenOdd:
case ClipperLib.PolyFillType.pftNonZero:
return (edge.WindCnt2 !== 0);
case ClipperLib.PolyFillType.pftPositive:
return (edge.WindCnt2 > 0);
default:
return (edge.WindCnt2 < 0);
}
case ClipperLib.ClipType.ctXor:
if (edge.WindDelta === 0)
switch (pft2)
{
case ClipperLib.PolyFillType.pftEvenOdd:
case ClipperLib.PolyFillType.pftNonZero:
return (edge.WindCnt2 === 0);
case ClipperLib.PolyFillType.pftPositive:
return (edge.WindCnt2 <= 0);
default:
return (edge.WindCnt2 >= 0);
}
else
return true;
}
return true;
};
ClipperLib.Clipper.prototype.SetWindingCount = function (edge)
{
var e = edge.PrevInAEL;
//find the edge of the same polytype that immediately preceeds 'edge' in AEL
while (e !== null && ((e.PolyTyp !== edge.PolyTyp) || (e.WindDelta === 0)))
e = e.PrevInAEL;
if (e === null)
{
var pft = (edge.PolyTyp === ClipperLib.PolyType.ptSubject ? this.m_SubjFillType : this.m_ClipFillType);
if (edge.WindDelta === 0)
{
edge.WindCnt = (pft === ClipperLib.PolyFillType.pftNegative ? -1 : 1);
}
else
{
edge.WindCnt = edge.WindDelta;
}
edge.WindCnt2 = 0;
e = this.m_ActiveEdges;
//ie get ready to calc WindCnt2
}
else if (edge.WindDelta === 0 && this.m_ClipType !== ClipperLib.ClipType.ctUnion)
{
edge.WindCnt = 1;
edge.WindCnt2 = e.WindCnt2;
e = e.NextInAEL;
//ie get ready to calc WindCnt2
}
else if (this.IsEvenOddFillType(edge))
{
//EvenOdd filling ...
if (edge.WindDelta === 0)
{
//are we inside a subj polygon ...
var Inside = true;
var e2 = e.PrevInAEL;
while (e2 !== null)
{
if (e2.PolyTyp === e.PolyTyp && e2.WindDelta !== 0)
Inside = !Inside;
e2 = e2.PrevInAEL;
}
edge.WindCnt = (Inside ? 0 : 1);
}
else
{
edge.WindCnt = edge.WindDelta;
}
edge.WindCnt2 = e.WindCnt2;
e = e.NextInAEL;
//ie get ready to calc WindCnt2
}
else
{
//nonZero, Positive or Negative filling ...
if (e.WindCnt * e.WindDelta < 0)
{
//prev edge is 'decreasing' WindCount (WC) toward zero
//so we're outside the previous polygon ...
if (Math.abs(e.WindCnt) > 1)
{
//outside prev poly but still inside another.
//when reversing direction of prev poly use the same WC
if (e.WindDelta * edge.WindDelta < 0)
edge.WindCnt = e.WindCnt;
else
edge.WindCnt = e.WindCnt + edge.WindDelta;
}
else
edge.WindCnt = (edge.WindDelta === 0 ? 1 : edge.WindDelta);
}
else
{
//prev edge is 'increasing' WindCount (WC) away from zero
//so we're inside the previous polygon ...
if (edge.WindDelta === 0)
edge.WindCnt = (e.WindCnt < 0 ? e.WindCnt - 1 : e.WindCnt + 1);
else if (e.WindDelta * edge.WindDelta < 0)
edge.WindCnt = e.WindCnt;
else
edge.WindCnt = e.WindCnt + edge.WindDelta;
}
edge.WindCnt2 = e.WindCnt2;
e = e.NextInAEL;
//ie get ready to calc WindCnt2
}
//update WindCnt2 ...
if (this.IsEvenOddAltFillType(edge))
{
//EvenOdd filling ...
while (e !== edge)
{
if (e.WindDelta !== 0)
edge.WindCnt2 = (edge.WindCnt2 === 0 ? 1 : 0);
e = e.NextInAEL;
}
}
else
{
//nonZero, Positive or Negative filling ...
while (e !== edge)
{
edge.WindCnt2 += e.WindDelta;
e = e.NextInAEL;
}
}
};
ClipperLib.Clipper.prototype.AddEdgeToSEL = function (edge)
{
//SEL pointers in PEdge are use to build transient lists of horizontal edges.
//However, since we don't need to worry about processing order, all additions
//are made to the front of the list ...
if (this.m_SortedEdges === null)
{
this.m_SortedEdges = edge;
edge.PrevInSEL = null;
edge.NextInSEL = null;
}
else
{
edge.NextInSEL = this.m_SortedEdges;
edge.PrevInSEL = null;
this.m_SortedEdges.PrevInSEL = edge;
this.m_SortedEdges = edge;
}
};
ClipperLib.Clipper.prototype.PopEdgeFromSEL = function (e)
{
//Pop edge from front of SEL (ie SEL is a FILO list)
e.v = this.m_SortedEdges;
if (e.v === null)
{
return false;
}
var oldE = e.v;
this.m_SortedEdges = e.v.NextInSEL;
if (this.m_SortedEdges !== null)
{
this.m_SortedEdges.PrevInSEL = null;
}
oldE.NextInSEL = null;
oldE.PrevInSEL = null;
return true;
};
ClipperLib.Clipper.prototype.CopyAELToSEL = function ()
{
var e = this.m_ActiveEdges;
this.m_SortedEdges = e;
while (e !== null)
{
e.PrevInSEL = e.PrevInAEL;
e.NextInSEL = e.NextInAEL;
e = e.NextInAEL;
}
};
ClipperLib.Clipper.prototype.SwapPositionsInSEL = function (edge1, edge2)
{
if (edge1.NextInSEL === null && edge1.PrevInSEL === null)
return;
if (edge2.NextInSEL === null && edge2.PrevInSEL === null)
return;
if (edge1.NextInSEL === edge2)
{
var next = edge2.NextInSEL;
if (next !== null)
next.PrevInSEL = edge1;
var prev = edge1.PrevInSEL;
if (prev !== null)
prev.NextInSEL = edge2;
edge2.PrevInSEL = prev;
edge2.NextInSEL = edge1;
edge1.PrevInSEL = edge2;
edge1.NextInSEL = next;
}
else if (edge2.NextInSEL === edge1)
{
var next = edge1.NextInSEL;
if (next !== null)
next.PrevInSEL = edge2;
var prev = edge2.PrevInSEL;
if (prev !== null)
prev.NextInSEL = edge1;
edge1.PrevInSEL = prev;
edge1.NextInSEL = edge2;
edge2.PrevInSEL = edge1;
edge2.NextInSEL = next;
}
else
{
var next = edge1.NextInSEL;
var prev = edge1.PrevInSEL;
edge1.NextInSEL = edge2.NextInSEL;
if (edge1.NextInSEL !== null)
edge1.NextInSEL.PrevInSEL = edge1;
edge1.PrevInSEL = edge2.PrevInSEL;
if (edge1.PrevInSEL !== null)
edge1.PrevInSEL.NextInSEL = edge1;
edge2.NextInSEL = next;
if (edge2.NextInSEL !== null)
edge2.NextInSEL.PrevInSEL = edge2;
edge2.PrevInSEL = prev;
if (edge2.PrevInSEL !== null)
edge2.PrevInSEL.NextInSEL = edge2;
}
if (edge1.PrevInSEL === null)
this.m_SortedEdges = edge1;
else if (edge2.PrevInSEL === null)
this.m_SortedEdges = edge2;
};
ClipperLib.Clipper.prototype.AddLocalMaxPoly = function (e1, e2, pt)
{
this.AddOutPt(e1, pt);
if (e2.WindDelta === 0) this.AddOutPt(e2, pt);
if (e1.OutIdx === e2.OutIdx)
{
e1.OutIdx = -1;
e2.OutIdx = -1;
}
else if (e1.OutIdx < e2.OutIdx)
this.AppendPolygon(e1, e2);
else
this.AppendPolygon(e2, e1);
};
ClipperLib.Clipper.prototype.AddLocalMinPoly = function (e1, e2, pt)
{
var result;
var e, prevE;
if (ClipperLib.ClipperBase.IsHorizontal(e2) || (e1.Dx > e2.Dx))
{
result = this.AddOutPt(e1, pt);
e2.OutIdx = e1.OutIdx;
e1.Side = ClipperLib.EdgeSide.esLeft;
e2.Side = ClipperLib.EdgeSide.esRight;
e = e1;
if (e.PrevInAEL === e2)
prevE = e2.PrevInAEL;
else
prevE = e.PrevInAEL;
}
else
{
result = this.AddOutPt(e2, pt);
e1.OutIdx = e2.OutIdx;
e1.Side = ClipperLib.EdgeSide.esRight;
e2.Side = ClipperLib.EdgeSide.esLeft;
e = e2;
if (e.PrevInAEL === e1)
prevE = e1.PrevInAEL;
else
prevE = e.PrevInAEL;
}
if (prevE !== null && prevE.OutIdx >= 0 && prevE.Top.Y < pt.Y && e.Top.Y < pt.Y)
{
var xPrev = ClipperLib.Clipper.TopX(prevE, pt.Y);
var xE = ClipperLib.Clipper.TopX(e, pt.Y);
if ((xPrev === xE) && (e.WindDelta !== 0) && (prevE.WindDelta !== 0) && ClipperLib.ClipperBase.SlopesEqual5(new ClipperLib.IntPoint2(xPrev, pt.Y), prevE.Top, new ClipperLib.IntPoint2(xE, pt.Y), e.Top, this.m_UseFullRange))
{
var outPt = this.AddOutPt(prevE, pt);
this.AddJoin(result, outPt, e.Top);
}
}
return result;
};
ClipperLib.Clipper.prototype.AddOutPt = function (e, pt)
{
if (e.OutIdx < 0)
{
var outRec = this.CreateOutRec();
outRec.IsOpen = (e.WindDelta === 0);
var newOp = new ClipperLib.OutPt();
outRec.Pts = newOp;
newOp.Idx = outRec.Idx;
//newOp.Pt = pt;
newOp.Pt.X = pt.X;
newOp.Pt.Y = pt.Y;
if (ClipperLib.use_xyz) newOp.Pt.Z = pt.Z;
newOp.Next = newOp;
newOp.Prev = newOp;
if (!outRec.IsOpen)
this.SetHoleState(e, outRec);
e.OutIdx = outRec.Idx;
//nb: do this after SetZ !
return newOp;
}
else
{
var outRec = this.m_PolyOuts[e.OutIdx];
//OutRec.Pts is the 'Left-most' point & OutRec.Pts.Prev is the 'Right-most'
var op = outRec.Pts;
var ToFront = (e.Side === ClipperLib.EdgeSide.esLeft);
if (ToFront && ClipperLib.IntPoint.op_Equality(pt, op.Pt))
return op;
else if (!ToFront && ClipperLib.IntPoint.op_Equality(pt, op.Prev.Pt))
return op.Prev;
var newOp = new ClipperLib.OutPt();
newOp.Idx = outRec.Idx;
//newOp.Pt = pt;
newOp.Pt.X = pt.X;
newOp.Pt.Y = pt.Y;
if (ClipperLib.use_xyz) newOp.Pt.Z = pt.Z;
newOp.Next = op;
newOp.Prev = op.Prev;
newOp.Prev.Next = newOp;
op.Prev = newOp;
if (ToFront)
outRec.Pts = newOp;
return newOp;
}
};
ClipperLib.Clipper.prototype.GetLastOutPt = function (e)
{
var outRec = this.m_PolyOuts[e.OutIdx];
if (e.Side === ClipperLib.EdgeSide.esLeft)
{
return outRec.Pts;
}
else
{
return outRec.Pts.Prev;
}
};
ClipperLib.Clipper.prototype.SwapPoints = function (pt1, pt2)
{
var tmp = new ClipperLib.IntPoint1(pt1.Value);
//pt1.Value = pt2.Value;
pt1.Value.X = pt2.Value.X;
pt1.Value.Y = pt2.Value.Y;
if (ClipperLib.use_xyz) pt1.Value.Z = pt2.Value.Z;
//pt2.Value = tmp;
pt2.Value.X = tmp.X;
pt2.Value.Y = tmp.Y;
if (ClipperLib.use_xyz) pt2.Value.Z = tmp.Z;
};
ClipperLib.Clipper.prototype.HorzSegmentsOverlap = function (seg1a, seg1b, seg2a, seg2b)
{
var tmp;
if (seg1a > seg1b)
{
tmp = seg1a;
seg1a = seg1b;
seg1b = tmp;
}
if (seg2a > seg2b)
{
tmp = seg2a;
seg2a = seg2b;
seg2b = tmp;
}
return (seg1a < seg2b) && (seg2a < seg1b);
}
ClipperLib.Clipper.prototype.SetHoleState = function (e, outRec)
{
var e2 = e.PrevInAEL;
var eTmp = null;
while (e2 !== null)
{
if (e2.OutIdx >= 0 && e2.WindDelta !== 0)
{
if (eTmp === null)
eTmp = e2;
else if (eTmp.OutIdx === e2.OutIdx)
eTmp = null; //paired
}
e2 = e2.PrevInAEL;
}
if (eTmp === null)
{
outRec.FirstLeft = null;
outRec.IsHole = false;
}
else
{
outRec.FirstLeft = this.m_PolyOuts[eTmp.OutIdx];
outRec.IsHole = !outRec.FirstLeft.IsHole;
}
};
ClipperLib.Clipper.prototype.GetDx = function (pt1, pt2)
{
if (pt1.Y === pt2.Y)
return ClipperLib.ClipperBase.horizontal;
else
return (pt2.X - pt1.X) / (pt2.Y - pt1.Y);
};
ClipperLib.Clipper.prototype.FirstIsBottomPt = function (btmPt1, btmPt2)
{
var p = btmPt1.Prev;
while ((ClipperLib.IntPoint.op_Equality(p.Pt, btmPt1.Pt)) && (p !== btmPt1))
p = p.Prev;
var dx1p = Math.abs(this.GetDx(btmPt1.Pt, p.Pt));
p = btmPt1.Next;
while ((ClipperLib.IntPoint.op_Equality(p.Pt, btmPt1.Pt)) && (p !== btmPt1))
p = p.Next;
var dx1n = Math.abs(this.GetDx(btmPt1.Pt, p.Pt));
p = btmPt2.Prev;
while ((ClipperLib.IntPoint.op_Equality(p.Pt, btmPt2.Pt)) && (p !== btmPt2))
p = p.Prev;
var dx2p = Math.abs(this.GetDx(btmPt2.Pt, p.Pt));
p = btmPt2.Next;
while ((ClipperLib.IntPoint.op_Equality(p.Pt, btmPt2.Pt)) && (p !== btmPt2))
p = p.Next;
var dx2n = Math.abs(this.GetDx(btmPt2.Pt, p.Pt));
if (Math.max(dx1p, dx1n) === Math.max(dx2p, dx2n) && Math.min(dx1p, dx1n) === Math.min(dx2p, dx2n))
{
return this.Area(btmPt1) > 0; //if otherwise identical use orientation
}
else
{
return (dx1p >= dx2p && dx1p >= dx2n) || (dx1n >= dx2p && dx1n >= dx2n);
}
};
ClipperLib.Clipper.prototype.GetBottomPt = function (pp)
{
var dups = null;
var p = pp.Next;
while (p !== pp)
{
if (p.Pt.Y > pp.Pt.Y)
{
pp = p;
dups = null;
}
else if (p.Pt.Y === pp.Pt.Y && p.Pt.X <= pp.Pt.X)
{
if (p.Pt.X < pp.Pt.X)
{
dups = null;
pp = p;
}
else
{
if (p.Next !== pp && p.Prev !== pp)
dups = p;
}
}
p = p.Next;
}
if (dups !== null)
{
//there appears to be at least 2 vertices at bottomPt so ...
while (dups !== p)
{
if (!this.FirstIsBottomPt(p, dups))
pp = dups;
dups = dups.Next;
while (ClipperLib.IntPoint.op_Inequality(dups.Pt, pp.Pt))
dups = dups.Next;
}
}
return pp;
};
ClipperLib.Clipper.prototype.GetLowermostRec = function (outRec1, outRec2)
{
//work out which polygon fragment has the correct hole state ...
if (outRec1.BottomPt === null)
outRec1.BottomPt = this.GetBottomPt(outRec1.Pts);
if (outRec2.BottomPt === null)
outRec2.BottomPt = this.GetBottomPt(outRec2.Pts);
var bPt1 = outRec1.BottomPt;
var bPt2 = outRec2.BottomPt;
if (bPt1.Pt.Y > bPt2.Pt.Y)
return outRec1;
else if (bPt1.Pt.Y < bPt2.Pt.Y)
return outRec2;
else if (bPt1.Pt.X < bPt2.Pt.X)
return outRec1;
else if (bPt1.Pt.X > bPt2.Pt.X)
return outRec2;
else if (bPt1.Next === bPt1)
return outRec2;
else if (bPt2.Next === bPt2)
return outRec1;
else if (this.FirstIsBottomPt(bPt1, bPt2))
return outRec1;
else
return outRec2;
};
ClipperLib.Clipper.prototype.OutRec1RightOfOutRec2 = function (outRec1, outRec2)
{
do {
outRec1 = outRec1.FirstLeft;
if (outRec1 === outRec2)
return true;
}
while (outRec1 !== null)
return false;
};
ClipperLib.Clipper.prototype.GetOutRec = function (idx)
{
var outrec = this.m_PolyOuts[idx];
while (outrec !== this.m_PolyOuts[outrec.Idx])
outrec = this.m_PolyOuts[outrec.Idx];
return outrec;
};
ClipperLib.Clipper.prototype.AppendPolygon = function (e1, e2)
{
//get the start and ends of both output polygons ...
var outRec1 = this.m_PolyOuts[e1.OutIdx];
var outRec2 = this.m_PolyOuts[e2.OutIdx];
var holeStateRec;
if (this.OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (this.OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = this.GetLowermostRec(outRec1, outRec2);
//get the start and ends of both output polygons and
//join E2 poly onto E1 poly and delete pointers to E2 ...
var p1_lft = outRec1.Pts;
var p1_rt = p1_lft.Prev;
var p2_lft = outRec2.Pts;
var p2_rt = p2_lft.Prev;
//join e2 poly onto e1 poly and delete pointers to e2 ...
if (e1.Side === ClipperLib.EdgeSide.esLeft)
{
if (e2.Side === ClipperLib.EdgeSide.esLeft)
{
//z y x a b c
this.ReversePolyPtLinks(p2_lft);
p2_lft.Next = p1_lft;
p1_lft.Prev = p2_lft;
p1_rt.Next = p2_rt;
p2_rt.Prev = p1_rt;
outRec1.Pts = p2_rt;
}
else
{
//x y z a b c
p2_rt.Next = p1_lft;
p1_lft.Prev = p2_rt;
p2_lft.Prev = p1_rt;
p1_rt.Next = p2_lft;
outRec1.Pts = p2_lft;
}
}
else
{
if (e2.Side === ClipperLib.EdgeSide.esRight)
{
//a b c z y x
this.ReversePolyPtLinks(p2_lft);
p1_rt.Next = p2_rt;
p2_rt.Prev = p1_rt;
p2_lft.Next = p1_lft;
p1_lft.Prev = p2_lft;
}
else
{
//a b c x y z
p1_rt.Next = p2_lft;
p2_lft.Prev = p1_rt;
p1_lft.Prev = p2_rt;
p2_rt.Next = p1_lft;
}
}
outRec1.BottomPt = null;
if (holeStateRec === outRec2)
{
if (outRec2.FirstLeft !== outRec1)
outRec1.FirstLeft = outRec2.FirstLeft;
outRec1.IsHole = outRec2.IsHole;
}
outRec2.Pts = null;
outRec2.BottomPt = null;
outRec2.FirstLeft = outRec1;
var OKIdx = e1.OutIdx;
var ObsoleteIdx = e2.OutIdx;
e1.OutIdx = -1;
//nb: safe because we only get here via AddLocalMaxPoly
e2.OutIdx = -1;
var e = this.m_ActiveEdges;
while (e !== null)
{
if (e.OutIdx === ObsoleteIdx)
{
e.OutIdx = OKIdx;
e.Side = e1.Side;
break;
}
e = e.NextInAEL;
}
outRec2.Idx = outRec1.Idx;
};
ClipperLib.Clipper.prototype.ReversePolyPtLinks = function (pp)
{
if (pp === null)
return;
var pp1;
var pp2;
pp1 = pp;
do {
pp2 = pp1.Next;
pp1.Next = pp1.Prev;
pp1.Prev = pp2;
pp1 = pp2;
}
while (pp1 !== pp)
};
ClipperLib.Clipper.SwapSides = function (edge1, edge2)
{
var side = edge1.Side;
edge1.Side = edge2.Side;
edge2.Side = side;
};
ClipperLib.Clipper.SwapPolyIndexes = function (edge1, edge2)
{
var outIdx = edge1.OutIdx;
edge1.OutIdx = edge2.OutIdx;
edge2.OutIdx = outIdx;
};
ClipperLib.Clipper.prototype.IntersectEdges = function (e1, e2, pt)
{
//e1 will be to the left of e2 BELOW the intersection. Therefore e1 is before
//e2 in AEL except when e1 is being inserted at the intersection point ...
var e1Contributing = (e1.OutIdx >= 0);
var e2Contributing = (e2.OutIdx >= 0);
if (ClipperLib.use_xyz)
this.SetZ(pt, e1, e2);
if (ClipperLib.use_lines)
{
//if either edge is on an OPEN path ...
if (e1.WindDelta === 0 || e2.WindDelta === 0)
{
//ignore subject-subject open path intersections UNLESS they
//are both open paths, AND they are both 'contributing maximas' ...
if (e1.WindDelta === 0 && e2.WindDelta === 0) return;
//if intersecting a subj line with a subj poly ...
else if (e1.PolyTyp === e2.PolyTyp &&
e1.WindDelta !== e2.WindDelta && this.m_ClipType === ClipperLib.ClipType.ctUnion)
{
if (e1.WindDelta === 0)
{
if (e2Contributing)
{
this.AddOutPt(e1, pt);
if (e1Contributing)
e1.OutIdx = -1;
}
}
else
{
if (e1Contributing)
{
this.AddOutPt(e2, pt);
if (e2Contributing)
e2.OutIdx = -1;
}
}
}
else if (e1.PolyTyp !== e2.PolyTyp)
{
if ((e1.WindDelta === 0) && Math.abs(e2.WindCnt) === 1 &&
(this.m_ClipType !== ClipperLib.ClipType.ctUnion || e2.WindCnt2 === 0))
{
this.AddOutPt(e1, pt);
if (e1Contributing)
e1.OutIdx = -1;
}
else if ((e2.WindDelta === 0) && (Math.abs(e1.WindCnt) === 1) &&
(this.m_ClipType !== ClipperLib.ClipType.ctUnion || e1.WindCnt2 === 0))
{
this.AddOutPt(e2, pt);
if (e2Contributing)
e2.OutIdx = -1;
}
}
return;
}
}
//update winding counts...
//assumes that e1 will be to the Right of e2 ABOVE the intersection
if (e1.PolyTyp === e2.PolyTyp)
{
if (this.IsEvenOddFillType(e1))
{
var oldE1WindCnt = e1.WindCnt;
e1.WindCnt = e2.WindCnt;
e2.WindCnt = oldE1WindCnt;
}
else
{
if (e1.WindCnt + e2.WindDelta === 0)
e1.WindCnt = -e1.WindCnt;
else
e1.WindCnt += e2.WindDelta;
if (e2.WindCnt - e1.WindDelta === 0)
e2.WindCnt = -e2.WindCnt;
else
e2.WindCnt -= e1.WindDelta;
}
}
else
{
if (!this.IsEvenOddFillType(e2))
e1.WindCnt2 += e2.WindDelta;
else
e1.WindCnt2 = (e1.WindCnt2 === 0) ? 1 : 0;
if (!this.IsEvenOddFillType(e1))
e2.WindCnt2 -= e1.WindDelta;
else
e2.WindCnt2 = (e2.WindCnt2 === 0) ? 1 : 0;
}
var e1FillType, e2FillType, e1FillType2, e2FillType2;
if (e1.PolyTyp === ClipperLib.PolyType.ptSubject)
{
e1FillType = this.m_SubjFillType;
e1FillType2 = this.m_ClipFillType;
}
else
{
e1FillType = this.m_ClipFillType;
e1FillType2 = this.m_SubjFillType;
}
if (e2.PolyTyp === ClipperLib.PolyType.ptSubject)
{
e2FillType = this.m_SubjFillType;
e2FillType2 = this.m_ClipFillType;
}
else
{
e2FillType = this.m_ClipFillType;
e2FillType2 = this.m_SubjFillType;
}
var e1Wc, e2Wc;
switch (e1FillType)
{
case ClipperLib.PolyFillType.pftPositive:
e1Wc = e1.WindCnt;
break;
case ClipperLib.PolyFillType.pftNegative:
e1Wc = -e1.WindCnt;
break;
default:
e1Wc = Math.abs(e1.WindCnt);
break;
}
switch (e2FillType)
{
case ClipperLib.PolyFillType.pftPositive:
e2Wc = e2.WindCnt;
break;
case ClipperLib.PolyFillType.pftNegative:
e2Wc = -e2.WindCnt;
break;
default:
e2Wc = Math.abs(e2.WindCnt);
break;
}
if (e1Contributing && e2Contributing)
{
if ((e1Wc !== 0 && e1Wc !== 1) || (e2Wc !== 0 && e2Wc !== 1) ||
(e1.PolyTyp !== e2.PolyTyp && this.m_ClipType !== ClipperLib.ClipType.ctXor))
{
this.AddLocalMaxPoly(e1, e2, pt);
}
else
{
this.AddOutPt(e1, pt);
this.AddOutPt(e2, pt);
ClipperLib.Clipper.SwapSides(e1, e2);
ClipperLib.Clipper.SwapPolyIndexes(e1, e2);
}
}
else if (e1Contributing)
{
if (e2Wc === 0 || e2Wc === 1)
{
this.AddOutPt(e1, pt);
ClipperLib.Clipper.SwapSides(e1, e2);
ClipperLib.Clipper.SwapPolyIndexes(e1, e2);
}
}
else if (e2Contributing)
{
if (e1Wc === 0 || e1Wc === 1)
{
this.AddOutPt(e2, pt);
ClipperLib.Clipper.SwapSides(e1, e2);
ClipperLib.Clipper.SwapPolyIndexes(e1, e2);
}
}
else if ((e1Wc === 0 || e1Wc === 1) && (e2Wc === 0 || e2Wc === 1))
{
//neither edge is currently contributing ...
var e1Wc2, e2Wc2;
switch (e1FillType2)
{
case ClipperLib.PolyFillType.pftPositive:
e1Wc2 = e1.WindCnt2;
break;
case ClipperLib.PolyFillType.pftNegative:
e1Wc2 = -e1.WindCnt2;
break;
default:
e1Wc2 = Math.abs(e1.WindCnt2);
break;
}
switch (e2FillType2)
{
case ClipperLib.PolyFillType.pftPositive:
e2Wc2 = e2.WindCnt2;
break;
case ClipperLib.PolyFillType.pftNegative:
e2Wc2 = -e2.WindCnt2;
break;
default:
e2Wc2 = Math.abs(e2.WindCnt2);
break;
}
if (e1.PolyTyp !== e2.PolyTyp)
{
this.AddLocalMinPoly(e1, e2, pt);
}
else if (e1Wc === 1 && e2Wc === 1)
switch (this.m_ClipType)
{
case ClipperLib.ClipType.ctIntersection:
if (e1Wc2 > 0 && e2Wc2 > 0)
this.AddLocalMinPoly(e1, e2, pt);
break;
case ClipperLib.ClipType.ctUnion:
if (e1Wc2 <= 0 && e2Wc2 <= 0)
this.AddLocalMinPoly(e1, e2, pt);
break;
case ClipperLib.ClipType.ctDifference:
if (((e1.PolyTyp === ClipperLib.PolyType.ptClip) && (e1Wc2 > 0) && (e2Wc2 > 0)) ||
((e1.PolyTyp === ClipperLib.PolyType.ptSubject) && (e1Wc2 <= 0) && (e2Wc2 <= 0)))
this.AddLocalMinPoly(e1, e2, pt);
break;
case ClipperLib.ClipType.ctXor:
this.AddLocalMinPoly(e1, e2, pt);
break;
}
else
ClipperLib.Clipper.SwapSides(e1, e2);
}
};
ClipperLib.Clipper.prototype.DeleteFromSEL = function (e)
{
var SelPrev = e.PrevInSEL;
var SelNext = e.NextInSEL;
if (SelPrev === null && SelNext === null && (e !== this.m_SortedEdges))
return;
//already deleted
if (SelPrev !== null)
SelPrev.NextInSEL = SelNext;
else
this.m_SortedEdges = SelNext;
if (SelNext !== null)
SelNext.PrevInSEL = SelPrev;
e.NextInSEL = null;
e.PrevInSEL = null;
};
ClipperLib.Clipper.prototype.ProcessHorizontals = function ()
{
var horzEdge = {}; //m_SortedEdges;
while (this.PopEdgeFromSEL(horzEdge))
{
this.ProcessHorizontal(horzEdge.v);
}
};
ClipperLib.Clipper.prototype.GetHorzDirection = function (HorzEdge, $var)
{
if (HorzEdge.Bot.X < HorzEdge.Top.X)
{
$var.Left = HorzEdge.Bot.X;
$var.Right = HorzEdge.Top.X;
$var.Dir = ClipperLib.Direction.dLeftToRight;
}
else
{
$var.Left = HorzEdge.Top.X;
$var.Right = HorzEdge.Bot.X;
$var.Dir = ClipperLib.Direction.dRightToLeft;
}
};
ClipperLib.Clipper.prototype.ProcessHorizontal = function (horzEdge)
{
var $var = {
Dir: null,
Left: null,
Right: null
};
this.GetHorzDirection(horzEdge, $var);
var dir = $var.Dir;
var horzLeft = $var.Left;
var horzRight = $var.Right;
var IsOpen = horzEdge.WindDelta === 0;
var eLastHorz = horzEdge,
eMaxPair = null;
while (eLastHorz.NextInLML !== null && ClipperLib.ClipperBase.IsHorizontal(eLastHorz.NextInLML))
eLastHorz = eLastHorz.NextInLML;
if (eLastHorz.NextInLML === null)
eMaxPair = this.GetMaximaPair(eLastHorz);
var currMax = this.m_Maxima;
if (currMax !== null)
{
//get the first maxima in range (X) ...
if (dir === ClipperLib.Direction.dLeftToRight)
{
while (currMax !== null && currMax.X <= horzEdge.Bot.X)
{
currMax = currMax.Next;
}
if (currMax !== null && currMax.X >= eLastHorz.Top.X)
{
currMax = null;
}
}
else
{
while (currMax.Next !== null && currMax.Next.X < horzEdge.Bot.X)
{
currMax = currMax.Next;
}
if (currMax.X <= eLastHorz.Top.X)
{
currMax = null;
}
}
}
var op1 = null;
for (;;) //loop through consec. horizontal edges
{
var IsLastHorz = (horzEdge === eLastHorz);
var e = this.GetNextInAEL(horzEdge, dir);
while (e !== null)
{
//this code block inserts extra coords into horizontal edges (in output
//polygons) whereever maxima touch these horizontal edges. This helps
//'simplifying' polygons (ie if the Simplify property is set).
if (currMax !== null)
{
if (dir === ClipperLib.Direction.dLeftToRight)
{
while (currMax !== null && currMax.X < e.Curr.X)
{
if (horzEdge.OutIdx >= 0 && !IsOpen)
{
this.AddOutPt(horzEdge, new ClipperLib.IntPoint2(currMax.X, horzEdge.Bot.Y));
}
currMax = currMax.Next;
}
}
else
{
while (currMax !== null && currMax.X > e.Curr.X)
{
if (horzEdge.OutIdx >= 0 && !IsOpen)
{
this.AddOutPt(horzEdge, new ClipperLib.IntPoint2(currMax.X, horzEdge.Bot.Y));
}
currMax = currMax.Prev;
}
}
}
if ((dir === ClipperLib.Direction.dLeftToRight && e.Curr.X > horzRight) || (dir === ClipperLib.Direction.dRightToLeft && e.Curr.X < horzLeft))
{
break;
}
//Also break if we've got to the end of an intermediate horizontal edge ...
//nb: Smaller Dx's are to the right of larger Dx's ABOVE the horizontal.
if (e.Curr.X === horzEdge.Top.X && horzEdge.NextInLML !== null && e.Dx < horzEdge.NextInLML.Dx)
break;
if (horzEdge.OutIdx >= 0 && !IsOpen) //note: may be done multiple times
{
if (ClipperLib.use_xyz)
{
if (dir === ClipperLib.Direction.dLeftToRight)
this.SetZ(e.Curr, horzEdge, e);
else this.SetZ(e.Curr, e, horzEdge);
}
op1 = this.AddOutPt(horzEdge, e.Curr);
var eNextHorz = this.m_SortedEdges;
while (eNextHorz !== null)
{
if (eNextHorz.OutIdx >= 0 && this.HorzSegmentsOverlap(horzEdge.Bot.X, horzEdge.Top.X, eNextHorz.Bot.X, eNextHorz.Top.X))
{
var op2 = this.GetLastOutPt(eNextHorz);
this.AddJoin(op2, op1, eNextHorz.Top);
}
eNextHorz = eNextHorz.NextInSEL;
}
this.AddGhostJoin(op1, horzEdge.Bot);
}
//OK, so far we're still in range of the horizontal Edge but make sure
//we're at the last of consec. horizontals when matching with eMaxPair
if (e === eMaxPair && IsLastHorz)
{
if (horzEdge.OutIdx >= 0)
{
this.AddLocalMaxPoly(horzEdge, eMaxPair, horzEdge.Top);
}
this.DeleteFromAEL(horzEdge);
this.DeleteFromAEL(eMaxPair);
return;
}
if (dir === ClipperLib.Direction.dLeftToRight)
{
var Pt = new ClipperLib.IntPoint2(e.Curr.X, horzEdge.Curr.Y);
this.IntersectEdges(horzEdge, e, Pt);
}
else
{
var Pt = new ClipperLib.IntPoint2(e.Curr.X, horzEdge.Curr.Y);
this.IntersectEdges(e, horzEdge, Pt);
}
var eNext = this.GetNextInAEL(e, dir);
this.SwapPositionsInAEL(horzEdge, e);
e = eNext;
} //end while(e !== null)
//Break out of loop if HorzEdge.NextInLML is not also horizontal ...
if (horzEdge.NextInLML === null || !ClipperLib.ClipperBase.IsHorizontal(horzEdge.NextInLML))
{
break;
}
horzEdge = this.UpdateEdgeIntoAEL(horzEdge);
if (horzEdge.OutIdx >= 0)
{
this.AddOutPt(horzEdge, horzEdge.Bot);
}
$var = {
Dir: dir,
Left: horzLeft,
Right: horzRight
};
this.GetHorzDirection(horzEdge, $var);
dir = $var.Dir;
horzLeft = $var.Left;
horzRight = $var.Right;
} //end for (;;)
if (horzEdge.OutIdx >= 0 && op1 === null)
{
op1 = this.GetLastOutPt(horzEdge);
var eNextHorz = this.m_SortedEdges;
while (eNextHorz !== null)
{
if (eNextHorz.OutIdx >= 0 && this.HorzSegmentsOverlap(horzEdge.Bot.X, horzEdge.Top.X, eNextHorz.Bot.X, eNextHorz.Top.X))
{
var op2 = this.GetLastOutPt(eNextHorz);
this.AddJoin(op2, op1, eNextHorz.Top);
}
eNextHorz = eNextHorz.NextInSEL;
}
this.AddGhostJoin(op1, horzEdge.Top);
}
if (horzEdge.NextInLML !== null)
{
if (horzEdge.OutIdx >= 0)
{
op1 = this.AddOutPt(horzEdge, horzEdge.Top);
horzEdge = this.UpdateEdgeIntoAEL(horzEdge);
if (horzEdge.WindDelta === 0)
{
return;
}
//nb: HorzEdge is no longer horizontal here
var ePrev = horzEdge.PrevInAEL;
var eNext = horzEdge.NextInAEL;
if (ePrev !== null && ePrev.Curr.X === horzEdge.Bot.X && ePrev.Curr.Y === horzEdge.Bot.Y && ePrev.WindDelta === 0 && (ePrev.OutIdx >= 0 && ePrev.Curr.Y > ePrev.Top.Y && ClipperLib.ClipperBase.SlopesEqual3(horzEdge, ePrev, this.m_UseFullRange)))
{
var op2 = this.AddOutPt(ePrev, horzEdge.Bot);
this.AddJoin(op1, op2, horzEdge.Top);
}
else if (eNext !== null && eNext.Curr.X === horzEdge.Bot.X && eNext.Curr.Y === horzEdge.Bot.Y && eNext.WindDelta !== 0 && eNext.OutIdx >= 0 && eNext.Curr.Y > eNext.Top.Y && ClipperLib.ClipperBase.SlopesEqual3(horzEdge, eNext, this.m_UseFullRange))
{
var op2 = this.AddOutPt(eNext, horzEdge.Bot);
this.AddJoin(op1, op2, horzEdge.Top);
}
}
else
{
horzEdge = this.UpdateEdgeIntoAEL(horzEdge);
}
}
else
{
if (horzEdge.OutIdx >= 0)
{
this.AddOutPt(horzEdge, horzEdge.Top);
}
this.DeleteFromAEL(horzEdge);
}
};
ClipperLib.Clipper.prototype.GetNextInAEL = function (e, Direction)
{
return Direction === ClipperLib.Direction.dLeftToRight ? e.NextInAEL : e.PrevInAEL;
};
ClipperLib.Clipper.prototype.IsMinima = function (e)
{
return e !== null && (e.Prev.NextInLML !== e) && (e.Next.NextInLML !== e);
};
ClipperLib.Clipper.prototype.IsMaxima = function (e, Y)
{
return (e !== null && e.Top.Y === Y && e.NextInLML === null);
};
ClipperLib.Clipper.prototype.IsIntermediate = function (e, Y)
{
return (e.Top.Y === Y && e.NextInLML !== null);
};
ClipperLib.Clipper.prototype.GetMaximaPair = function (e)
{
if ((ClipperLib.IntPoint.op_Equality(e.Next.Top, e.Top)) && e.Next.NextInLML === null)
{
return e.Next;
}
else
{
if ((ClipperLib.IntPoint.op_Equality(e.Prev.Top, e.Top)) && e.Prev.NextInLML === null)
{
return e.Prev;
}
else
{
return null;
}
}
};
ClipperLib.Clipper.prototype.GetMaximaPairEx = function (e)
{
//as above but returns null if MaxPair isn't in AEL (unless it's horizontal)
var result = this.GetMaximaPair(e);
if (result === null || result.OutIdx === ClipperLib.ClipperBase.Skip ||
((result.NextInAEL === result.PrevInAEL) && !ClipperLib.ClipperBase.IsHorizontal(result)))
{
return null;
}
return result;
};
ClipperLib.Clipper.prototype.ProcessIntersections = function (topY)
{
if (this.m_ActiveEdges === null)
return true;
try
{
this.BuildIntersectList(topY);
if (this.m_IntersectList.length === 0)
return true;
if (this.m_IntersectList.length === 1 || this.FixupIntersectionOrder())
this.ProcessIntersectList();
else
return false;
}
catch ($$e2)
{
this.m_SortedEdges = null;
this.m_IntersectList.length = 0;
ClipperLib.Error("ProcessIntersections error");
}
this.m_SortedEdges = null;
return true;
};
ClipperLib.Clipper.prototype.BuildIntersectList = function (topY)
{
if (this.m_ActiveEdges === null)
return;
//prepare for sorting ...
var e = this.m_ActiveEdges;
//console.log(JSON.stringify(JSON.decycle( e )));
this.m_SortedEdges = e;
while (e !== null)
{
e.PrevInSEL = e.PrevInAEL;
e.NextInSEL = e.NextInAEL;
e.Curr.X = ClipperLib.Clipper.TopX(e, topY);
e = e.NextInAEL;
}
//bubblesort ...
var isModified = true;
while (isModified && this.m_SortedEdges !== null)
{
isModified = false;
e = this.m_SortedEdges;
while (e.NextInSEL !== null)
{
var eNext = e.NextInSEL;
var pt = new ClipperLib.IntPoint0();
//console.log("e.Curr.X: " + e.Curr.X + " eNext.Curr.X" + eNext.Curr.X);
if (e.Curr.X > eNext.Curr.X)
{
this.IntersectPoint(e, eNext, pt);
if (pt.Y < topY)
{
pt = new ClipperLib.IntPoint2(ClipperLib.Clipper.TopX(e, topY), topY);
}
var newNode = new ClipperLib.IntersectNode();
newNode.Edge1 = e;
newNode.Edge2 = eNext;
//newNode.Pt = pt;
newNode.Pt.X = pt.X;
newNode.Pt.Y = pt.Y;
if (ClipperLib.use_xyz) newNode.Pt.Z = pt.Z;
this.m_IntersectList.push(newNode);
this.SwapPositionsInSEL(e, eNext);
isModified = true;
}
else
e = eNext;
}
if (e.PrevInSEL !== null)
e.PrevInSEL.NextInSEL = null;
else
break;
}
this.m_SortedEdges = null;
};
ClipperLib.Clipper.prototype.EdgesAdjacent = function (inode)
{
return (inode.Edge1.NextInSEL === inode.Edge2) || (inode.Edge1.PrevInSEL === inode.Edge2);
};
ClipperLib.Clipper.IntersectNodeSort = function (node1, node2)
{
//the following typecast is safe because the differences in Pt.Y will
//be limited to the height of the scanbeam.
return (node2.Pt.Y - node1.Pt.Y);
};
ClipperLib.Clipper.prototype.FixupIntersectionOrder = function ()
{
//pre-condition: intersections are sorted bottom-most first.
//Now it's crucial that intersections are made only between adjacent edges,
//so to ensure this the order of intersections may need adjusting ...
this.m_IntersectList.sort(this.m_IntersectNodeComparer);
this.CopyAELToSEL();
var cnt = this.m_IntersectList.length;
for (var i = 0; i < cnt; i++)
{
if (!this.EdgesAdjacent(this.m_IntersectList[i]))
{
var j = i + 1;
while (j < cnt && !this.EdgesAdjacent(this.m_IntersectList[j]))
j++;
if (j === cnt)
return false;
var tmp = this.m_IntersectList[i];
this.m_IntersectList[i] = this.m_IntersectList[j];
this.m_IntersectList[j] = tmp;
}
this.SwapPositionsInSEL(this.m_IntersectList[i].Edge1, this.m_IntersectList[i].Edge2);
}
return true;
};
ClipperLib.Clipper.prototype.ProcessIntersectList = function ()
{
for (var i = 0, ilen = this.m_IntersectList.length; i < ilen; i++)
{
var iNode = this.m_IntersectList[i];
this.IntersectEdges(iNode.Edge1, iNode.Edge2, iNode.Pt);
this.SwapPositionsInAEL(iNode.Edge1, iNode.Edge2);
}
this.m_IntersectList.length = 0;
};
/*
--------------------------------
Round speedtest: http://jsperf.com/fastest-round
--------------------------------
*/
var R1 = function (a)
{
return a < 0 ? Math.ceil(a - 0.5) : Math.round(a)
};
var R2 = function (a)
{
return a < 0 ? Math.ceil(a - 0.5) : Math.floor(a + 0.5)
};
var R3 = function (a)
{
return a < 0 ? -Math.round(Math.abs(a)) : Math.round(a)
};
var R4 = function (a)
{
if (a < 0)
{
a -= 0.5;
return a < -2147483648 ? Math.ceil(a) : a | 0;
}
else
{
a += 0.5;
return a > 2147483647 ? Math.floor(a) : a | 0;
}
};
if (browser.msie) ClipperLib.Clipper.Round = R1;
else if (browser.chromium) ClipperLib.Clipper.Round = R3;
else if (browser.safari) ClipperLib.Clipper.Round = R4;
else ClipperLib.Clipper.Round = R2; // eg. browser.chrome || browser.firefox || browser.opera
ClipperLib.Clipper.TopX = function (edge, currentY)
{
//if (edge.Bot == edge.Curr) alert ("edge.Bot = edge.Curr");
//if (edge.Bot == edge.Top) alert ("edge.Bot = edge.Top");
if (currentY === edge.Top.Y)
return edge.Top.X;
return edge.Bot.X + ClipperLib.Clipper.Round(edge.Dx * (currentY - edge.Bot.Y));
};
ClipperLib.Clipper.prototype.IntersectPoint = function (edge1, edge2, ip)
{
ip.X = 0;
ip.Y = 0;
var b1, b2;
//nb: with very large coordinate values, it's possible for SlopesEqual() to
//return false but for the edge.Dx value be equal due to double precision rounding.
if (edge1.Dx === edge2.Dx)
{
ip.Y = edge1.Curr.Y;
ip.X = ClipperLib.Clipper.TopX(edge1, ip.Y);
return;
}
if (edge1.Delta.X === 0)
{
ip.X = edge1.Bot.X;
if (ClipperLib.ClipperBase.IsHorizontal(edge2))
{
ip.Y = edge2.Bot.Y;
}
else
{
b2 = edge2.Bot.Y - (edge2.Bot.X / edge2.Dx);
ip.Y = ClipperLib.Clipper.Round(ip.X / edge2.Dx + b2);
}
}
else if (edge2.Delta.X === 0)
{
ip.X = edge2.Bot.X;
if (ClipperLib.ClipperBase.IsHorizontal(edge1))
{
ip.Y = edge1.Bot.Y;
}
else
{
b1 = edge1.Bot.Y - (edge1.Bot.X / edge1.Dx);
ip.Y = ClipperLib.Clipper.Round(ip.X / edge1.Dx + b1);
}
}
else
{
b1 = edge1.Bot.X - edge1.Bot.Y * edge1.Dx;
b2 = edge2.Bot.X - edge2.Bot.Y * edge2.Dx;
var q = (b2 - b1) / (edge1.Dx - edge2.Dx);
ip.Y = ClipperLib.Clipper.Round(q);
if (Math.abs(edge1.Dx) < Math.abs(edge2.Dx))
ip.X = ClipperLib.Clipper.Round(edge1.Dx * q + b1);
else
ip.X = ClipperLib.Clipper.Round(edge2.Dx * q + b2);
}
if (ip.Y < edge1.Top.Y || ip.Y < edge2.Top.Y)
{
if (edge1.Top.Y > edge2.Top.Y)
{
ip.Y = edge1.Top.Y;
ip.X = ClipperLib.Clipper.TopX(edge2, edge1.Top.Y);
return ip.X < edge1.Top.X;
}
else
ip.Y = edge2.Top.Y;
if (Math.abs(edge1.Dx) < Math.abs(edge2.Dx))
ip.X = ClipperLib.Clipper.TopX(edge1, ip.Y);
else
ip.X = ClipperLib.Clipper.TopX(edge2, ip.Y);
}
//finally, don't allow 'ip' to be BELOW curr.Y (ie bottom of scanbeam) ...
if (ip.Y > edge1.Curr.Y)
{
ip.Y = edge1.Curr.Y;
//better to use the more vertical edge to derive X ...
if (Math.abs(edge1.Dx) > Math.abs(edge2.Dx))
ip.X = ClipperLib.Clipper.TopX(edge2, ip.Y);
else
ip.X = ClipperLib.Clipper.TopX(edge1, ip.Y);
}
};
ClipperLib.Clipper.prototype.ProcessEdgesAtTopOfScanbeam = function (topY)
{
var e = this.m_ActiveEdges;
while (e !== null)
{
//1. process maxima, treating them as if they're 'bent' horizontal edges,
// but exclude maxima with horizontal edges. nb: e can't be a horizontal.
var IsMaximaEdge = this.IsMaxima(e, topY);
if (IsMaximaEdge)
{
var eMaxPair = this.GetMaximaPairEx(e);
IsMaximaEdge = (eMaxPair === null || !ClipperLib.ClipperBase.IsHorizontal(eMaxPair));
}
if (IsMaximaEdge)
{
if (this.StrictlySimple)
{
this.InsertMaxima(e.Top.X);
}
var ePrev = e.PrevInAEL;
this.DoMaxima(e);
if (ePrev === null)
e = this.m_ActiveEdges;
else
e = ePrev.NextInAEL;
}
else
{
//2. promote horizontal edges, otherwise update Curr.X and Curr.Y ...
if (this.IsIntermediate(e, topY) && ClipperLib.ClipperBase.IsHorizontal(e.NextInLML))
{
e = this.UpdateEdgeIntoAEL(e);
if (e.OutIdx >= 0)
this.AddOutPt(e, e.Bot);
this.AddEdgeToSEL(e);
}
else
{
e.Curr.X = ClipperLib.Clipper.TopX(e, topY);
e.Curr.Y = topY;
}
if (ClipperLib.use_xyz)
{
if (e.Top.Y === topY) e.Curr.Z = e.Top.Z;
else if (e.Bot.Y === topY) e.Curr.Z = e.Bot.Z;
else e.Curr.Z = 0;
}
//When StrictlySimple and 'e' is being touched by another edge, then
//make sure both edges have a vertex here ...
if (this.StrictlySimple)
{
var ePrev = e.PrevInAEL;
if ((e.OutIdx >= 0) && (e.WindDelta !== 0) && ePrev !== null &&
(ePrev.OutIdx >= 0) && (ePrev.Curr.X === e.Curr.X) &&
(ePrev.WindDelta !== 0))
{
var ip = new ClipperLib.IntPoint1(e.Curr);
if (ClipperLib.use_xyz)
{
this.SetZ(ip, ePrev, e);
}
var op = this.AddOutPt(ePrev, ip);
var op2 = this.AddOutPt(e, ip);
this.AddJoin(op, op2, ip); //StrictlySimple (type-3) join
}
}
e = e.NextInAEL;
}
}
//3. Process horizontals at the Top of the scanbeam ...
this.ProcessHorizontals();
this.m_Maxima = null;
//4. Promote intermediate vertices ...
e = this.m_ActiveEdges;
while (e !== null)
{
if (this.IsIntermediate(e, topY))
{
var op = null;
if (e.OutIdx >= 0)
op = this.AddOutPt(e, e.Top);
e = this.UpdateEdgeIntoAEL(e);
//if output polygons share an edge, they'll need joining later ...
var ePrev = e.PrevInAEL;
var eNext = e.NextInAEL;
if (ePrev !== null && ePrev.Curr.X === e.Bot.X && ePrev.Curr.Y === e.Bot.Y && op !== null && ePrev.OutIdx >= 0 && ePrev.Curr.Y === ePrev.Top.Y && ClipperLib.ClipperBase.SlopesEqual5(e.Curr, e.Top, ePrev.Curr, ePrev.Top, this.m_UseFullRange) && (e.WindDelta !== 0) && (ePrev.WindDelta !== 0))
{
var op2 = this.AddOutPt(ePrev2, e.Bot);
this.AddJoin(op, op2, e.Top);
}
else if (eNext !== null && eNext.Curr.X === e.Bot.X && eNext.Curr.Y === e.Bot.Y && op !== null && eNext.OutIdx >= 0 && eNext.Curr.Y === eNext.Top.Y && ClipperLib.ClipperBase.SlopesEqual5(e.Curr, e.Top, eNext.Curr, eNext.Top, this.m_UseFullRange) && (e.WindDelta !== 0) && (eNext.WindDelta !== 0))
{
var op2 = this.AddOutPt(eNext, e.Bot);
this.AddJoin(op, op2, e.Top);
}
}
e = e.NextInAEL;
}
};
ClipperLib.Clipper.prototype.DoMaxima = function (e)
{
var eMaxPair = this.GetMaximaPairEx(e);
if (eMaxPair === null)
{
if (e.OutIdx >= 0)
this.AddOutPt(e, e.Top);
this.DeleteFromAEL(e);
return;
}
var eNext = e.NextInAEL;
while (eNext !== null && eNext !== eMaxPair)
{
this.IntersectEdges(e, eNext, e.Top);
this.SwapPositionsInAEL(e, eNext);
eNext = e.NextInAEL;
}
if (e.OutIdx === -1 && eMaxPair.OutIdx === -1)
{
this.DeleteFromAEL(e);
this.DeleteFromAEL(eMaxPair);
}
else if (e.OutIdx >= 0 && eMaxPair.OutIdx >= 0)
{
if (e.OutIdx >= 0) this.AddLocalMaxPoly(e, eMaxPair, e.Top);
this.DeleteFromAEL(e);
this.DeleteFromAEL(eMaxPair);
}
else if (ClipperLib.use_lines && e.WindDelta === 0)
{
if (e.OutIdx >= 0)
{
this.AddOutPt(e, e.Top);
e.OutIdx = ClipperLib.ClipperBase.Unassigned;
}
this.DeleteFromAEL(e);
if (eMaxPair.OutIdx >= 0)
{
this.AddOutPt(eMaxPair, e.Top);
eMaxPair.OutIdx = ClipperLib.ClipperBase.Unassigned;
}
this.DeleteFromAEL(eMaxPair);
}
else
ClipperLib.Error("DoMaxima error");
};
ClipperLib.Clipper.ReversePaths = function (polys)
{
for (var i = 0, len = polys.length; i < len; i++)
polys[i].reverse();
};
ClipperLib.Clipper.Orientation = function (poly)
{
return ClipperLib.Clipper.Area(poly) >= 0;
};
ClipperLib.Clipper.prototype.PointCount = function (pts)
{
if (pts === null)
return 0;
var result = 0;
var p = pts;
do {
result++;
p = p.Next;
}
while (p !== pts)
return result;
};
ClipperLib.Clipper.prototype.BuildResult = function (polyg)
{
ClipperLib.Clear(polyg);
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
var outRec = this.m_PolyOuts[i];
if (outRec.Pts === null)
continue;
var p = outRec.Pts.Prev;
var cnt = this.PointCount(p);
if (cnt < 2)
continue;
var pg = new Array(cnt);
for (var j = 0; j < cnt; j++)
{
pg[j] = p.Pt;
p = p.Prev;
}
polyg.push(pg);
}
};
ClipperLib.Clipper.prototype.BuildResult2 = function (polytree)
{
polytree.Clear();
//add each output polygon/contour to polytree ...
//polytree.m_AllPolys.set_Capacity(this.m_PolyOuts.length);
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
var outRec = this.m_PolyOuts[i];
var cnt = this.PointCount(outRec.Pts);
if ((outRec.IsOpen && cnt < 2) || (!outRec.IsOpen && cnt < 3))
continue;
this.FixHoleLinkage(outRec);
var pn = new ClipperLib.PolyNode();
polytree.m_AllPolys.push(pn);
outRec.PolyNode = pn;
pn.m_polygon.length = cnt;
var op = outRec.Pts.Prev;
for (var j = 0; j < cnt; j++)
{
pn.m_polygon[j] = op.Pt;
op = op.Prev;
}
}
//fixup PolyNode links etc ...
//polytree.m_Childs.set_Capacity(this.m_PolyOuts.length);
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
var outRec = this.m_PolyOuts[i];
if (outRec.PolyNode === null)
continue;
else if (outRec.IsOpen)
{
outRec.PolyNode.IsOpen = true;
polytree.AddChild(outRec.PolyNode);
}
else if (outRec.FirstLeft !== null && outRec.FirstLeft.PolyNode !== null)
outRec.FirstLeft.PolyNode.AddChild(outRec.PolyNode);
else
polytree.AddChild(outRec.PolyNode);
}
};
ClipperLib.Clipper.prototype.FixupOutPolyline = function (outRec)
{
var pp = outRec.Pts;
var lastPP = pp.Prev;
while (pp !== lastPP)
{
pp = pp.Next;
if (ClipperLib.IntPoint.op_Equality(pp.Pt, pp.Prev.Pt))
{
if (pp === lastPP)
{
lastPP = pp.Prev;
}
var tmpPP = pp.Prev;
tmpPP.Next = pp.Next;
pp.Next.Prev = tmpPP;
pp = tmpPP;
}
}
if (pp === pp.Prev)
{
outRec.Pts = null;
}
};
ClipperLib.Clipper.prototype.FixupOutPolygon = function (outRec)
{
//FixupOutPolygon() - removes duplicate points and simplifies consecutive
//parallel edges by removing the middle vertex.
var lastOK = null;
outRec.BottomPt = null;
var pp = outRec.Pts;
var preserveCol = this.PreserveCollinear || this.StrictlySimple;
for (;;)
{
if (pp.Prev === pp || pp.Prev === pp.Next)
{
outRec.Pts = null;
return;
}
//test for duplicate points and collinear edges ...
if ((ClipperLib.IntPoint.op_Equality(pp.Pt, pp.Next.Pt)) || (ClipperLib.IntPoint.op_Equality(pp.Pt, pp.Prev.Pt)) || (ClipperLib.ClipperBase.SlopesEqual4(pp.Prev.Pt, pp.Pt, pp.Next.Pt, this.m_UseFullRange) && (!preserveCol || !this.Pt2IsBetweenPt1AndPt3(pp.Prev.Pt, pp.Pt, pp.Next.Pt))))
{
lastOK = null;
pp.Prev.Next = pp.Next;
pp.Next.Prev = pp.Prev;
pp = pp.Prev;
}
else if (pp === lastOK)
break;
else
{
if (lastOK === null)
lastOK = pp;
pp = pp.Next;
}
}
outRec.Pts = pp;
};
ClipperLib.Clipper.prototype.DupOutPt = function (outPt, InsertAfter)
{
var result = new ClipperLib.OutPt();
//result.Pt = outPt.Pt;
result.Pt.X = outPt.Pt.X;
result.Pt.Y = outPt.Pt.Y;
if (ClipperLib.use_xyz) result.Pt.Z = outPt.Pt.Z;
result.Idx = outPt.Idx;
if (InsertAfter)
{
result.Next = outPt.Next;
result.Prev = outPt;
outPt.Next.Prev = result;
outPt.Next = result;
}
else
{
result.Prev = outPt.Prev;
result.Next = outPt;
outPt.Prev.Next = result;
outPt.Prev = result;
}
return result;
};
ClipperLib.Clipper.prototype.GetOverlap = function (a1, a2, b1, b2, $val)
{
if (a1 < a2)
{
if (b1 < b2)
{
$val.Left = Math.max(a1, b1);
$val.Right = Math.min(a2, b2);
}
else
{
$val.Left = Math.max(a1, b2);
$val.Right = Math.min(a2, b1);
}
}
else
{
if (b1 < b2)
{
$val.Left = Math.max(a2, b1);
$val.Right = Math.min(a1, b2);
}
else
{
$val.Left = Math.max(a2, b2);
$val.Right = Math.min(a1, b1);
}
}
return $val.Left < $val.Right;
};
ClipperLib.Clipper.prototype.JoinHorz = function (op1, op1b, op2, op2b, Pt, DiscardLeft)
{
var Dir1 = (op1.Pt.X > op1b.Pt.X ? ClipperLib.Direction.dRightToLeft : ClipperLib.Direction.dLeftToRight);
var Dir2 = (op2.Pt.X > op2b.Pt.X ? ClipperLib.Direction.dRightToLeft : ClipperLib.Direction.dLeftToRight);
if (Dir1 === Dir2)
return false;
//When DiscardLeft, we want Op1b to be on the Left of Op1, otherwise we
//want Op1b to be on the Right. (And likewise with Op2 and Op2b.)
//So, to facilitate this while inserting Op1b and Op2b ...
//when DiscardLeft, make sure we're AT or RIGHT of Pt before adding Op1b,
//otherwise make sure we're AT or LEFT of Pt. (Likewise with Op2b.)
if (Dir1 === ClipperLib.Direction.dLeftToRight)
{
while (op1.Next.Pt.X <= Pt.X &&
op1.Next.Pt.X >= op1.Pt.X && op1.Next.Pt.Y === Pt.Y)
op1 = op1.Next;
if (DiscardLeft && (op1.Pt.X !== Pt.X))
op1 = op1.Next;
op1b = this.DupOutPt(op1, !DiscardLeft);
if (ClipperLib.IntPoint.op_Inequality(op1b.Pt, Pt))
{
op1 = op1b;
//op1.Pt = Pt;
op1.Pt.X = Pt.X;
op1.Pt.Y = Pt.Y;
if (ClipperLib.use_xyz) op1.Pt.Z = Pt.Z;
op1b = this.DupOutPt(op1, !DiscardLeft);
}
}
else
{
while (op1.Next.Pt.X >= Pt.X &&
op1.Next.Pt.X <= op1.Pt.X && op1.Next.Pt.Y === Pt.Y)
op1 = op1.Next;
if (!DiscardLeft && (op1.Pt.X !== Pt.X))
op1 = op1.Next;
op1b = this.DupOutPt(op1, DiscardLeft);
if (ClipperLib.IntPoint.op_Inequality(op1b.Pt, Pt))
{
op1 = op1b;
//op1.Pt = Pt;
op1.Pt.X = Pt.X;
op1.Pt.Y = Pt.Y;
if (ClipperLib.use_xyz) op1.Pt.Z = Pt.Z;
op1b = this.DupOutPt(op1, DiscardLeft);
}
}
if (Dir2 === ClipperLib.Direction.dLeftToRight)
{
while (op2.Next.Pt.X <= Pt.X &&
op2.Next.Pt.X >= op2.Pt.X && op2.Next.Pt.Y === Pt.Y)
op2 = op2.Next;
if (DiscardLeft && (op2.Pt.X !== Pt.X))
op2 = op2.Next;
op2b = this.DupOutPt(op2, !DiscardLeft);
if (ClipperLib.IntPoint.op_Inequality(op2b.Pt, Pt))
{
op2 = op2b;
//op2.Pt = Pt;
op2.Pt.X = Pt.X;
op2.Pt.Y = Pt.Y;
if (ClipperLib.use_xyz) op2.Pt.Z = Pt.Z;
op2b = this.DupOutPt(op2, !DiscardLeft);
}
}
else
{
while (op2.Next.Pt.X >= Pt.X &&
op2.Next.Pt.X <= op2.Pt.X && op2.Next.Pt.Y === Pt.Y)
op2 = op2.Next;
if (!DiscardLeft && (op2.Pt.X !== Pt.X))
op2 = op2.Next;
op2b = this.DupOutPt(op2, DiscardLeft);
if (ClipperLib.IntPoint.op_Inequality(op2b.Pt, Pt))
{
op2 = op2b;
//op2.Pt = Pt;
op2.Pt.X = Pt.X;
op2.Pt.Y = Pt.Y;
if (ClipperLib.use_xyz) op2.Pt.Z = Pt.Z;
op2b = this.DupOutPt(op2, DiscardLeft);
}
}
if ((Dir1 === ClipperLib.Direction.dLeftToRight) === DiscardLeft)
{
op1.Prev = op2;
op2.Next = op1;
op1b.Next = op2b;
op2b.Prev = op1b;
}
else
{
op1.Next = op2;
op2.Prev = op1;
op1b.Prev = op2b;
op2b.Next = op1b;
}
return true;
};
ClipperLib.Clipper.prototype.JoinPoints = function (j, outRec1, outRec2)
{
var op1 = j.OutPt1,
op1b = new ClipperLib.OutPt();
var op2 = j.OutPt2,
op2b = new ClipperLib.OutPt();
//There are 3 kinds of joins for output polygons ...
//1. Horizontal joins where Join.OutPt1 & Join.OutPt2 are vertices anywhere
//along (horizontal) collinear edges (& Join.OffPt is on the same horizontal).
//2. Non-horizontal joins where Join.OutPt1 & Join.OutPt2 are at the same
//location at the Bottom of the overlapping segment (& Join.OffPt is above).
//3. StrictlySimple joins where edges touch but are not collinear and where
//Join.OutPt1, Join.OutPt2 & Join.OffPt all share the same point.
var isHorizontal = (j.OutPt1.Pt.Y === j.OffPt.Y);
if (isHorizontal && (ClipperLib.IntPoint.op_Equality(j.OffPt, j.OutPt1.Pt)) && (ClipperLib.IntPoint.op_Equality(j.OffPt, j.OutPt2.Pt)))
{
//Strictly Simple join ...
if (outRec1 !== outRec2) return false;
op1b = j.OutPt1.Next;
while (op1b !== op1 && (ClipperLib.IntPoint.op_Equality(op1b.Pt, j.OffPt)))
op1b = op1b.Next;
var reverse1 = (op1b.Pt.Y > j.OffPt.Y);
op2b = j.OutPt2.Next;
while (op2b !== op2 && (ClipperLib.IntPoint.op_Equality(op2b.Pt, j.OffPt)))
op2b = op2b.Next;
var reverse2 = (op2b.Pt.Y > j.OffPt.Y);
if (reverse1 === reverse2)
return false;
if (reverse1)
{
op1b = this.DupOutPt(op1, false);
op2b = this.DupOutPt(op2, true);
op1.Prev = op2;
op2.Next = op1;
op1b.Next = op2b;
op2b.Prev = op1b;
j.OutPt1 = op1;
j.OutPt2 = op1b;
return true;
}
else
{
op1b = this.DupOutPt(op1, true);
op2b = this.DupOutPt(op2, false);
op1.Next = op2;
op2.Prev = op1;
op1b.Prev = op2b;
op2b.Next = op1b;
j.OutPt1 = op1;
j.OutPt2 = op1b;
return true;
}
}
else if (isHorizontal)
{
//treat horizontal joins differently to non-horizontal joins since with
//them we're not yet sure where the overlapping is. OutPt1.Pt & OutPt2.Pt
//may be anywhere along the horizontal edge.
op1b = op1;
while (op1.Prev.Pt.Y === op1.Pt.Y && op1.Prev !== op1b && op1.Prev !== op2)
op1 = op1.Prev;
while (op1b.Next.Pt.Y === op1b.Pt.Y && op1b.Next !== op1 && op1b.Next !== op2)
op1b = op1b.Next;
if (op1b.Next === op1 || op1b.Next === op2)
return false;
//a flat 'polygon'
op2b = op2;
while (op2.Prev.Pt.Y === op2.Pt.Y && op2.Prev !== op2b && op2.Prev !== op1b)
op2 = op2.Prev;
while (op2b.Next.Pt.Y === op2b.Pt.Y && op2b.Next !== op2 && op2b.Next !== op1)
op2b = op2b.Next;
if (op2b.Next === op2 || op2b.Next === op1)
return false;
//a flat 'polygon'
//Op1 -. Op1b & Op2 -. Op2b are the extremites of the horizontal edges
var $val = {
Left: null,
Right: null
};
if (!this.GetOverlap(op1.Pt.X, op1b.Pt.X, op2.Pt.X, op2b.Pt.X, $val))
return false;
var Left = $val.Left;
var Right = $val.Right;
//DiscardLeftSide: when overlapping edges are joined, a spike will created
//which needs to be cleaned up. However, we don't want Op1 or Op2 caught up
//on the discard Side as either may still be needed for other joins ...
var Pt = new ClipperLib.IntPoint0();
var DiscardLeftSide;
if (op1.Pt.X >= Left && op1.Pt.X <= Right)
{
//Pt = op1.Pt;
Pt.X = op1.Pt.X;
Pt.Y = op1.Pt.Y;
if (ClipperLib.use_xyz) Pt.Z = op1.Pt.Z;
DiscardLeftSide = (op1.Pt.X > op1b.Pt.X);
}
else if (op2.Pt.X >= Left && op2.Pt.X <= Right)
{
//Pt = op2.Pt;
Pt.X = op2.Pt.X;
Pt.Y = op2.Pt.Y;
if (ClipperLib.use_xyz) Pt.Z = op2.Pt.Z;
DiscardLeftSide = (op2.Pt.X > op2b.Pt.X);
}
else if (op1b.Pt.X >= Left && op1b.Pt.X <= Right)
{
//Pt = op1b.Pt;
Pt.X = op1b.Pt.X;
Pt.Y = op1b.Pt.Y;
if (ClipperLib.use_xyz) Pt.Z = op1b.Pt.Z;
DiscardLeftSide = op1b.Pt.X > op1.Pt.X;
}
else
{
//Pt = op2b.Pt;
Pt.X = op2b.Pt.X;
Pt.Y = op2b.Pt.Y;
if (ClipperLib.use_xyz) Pt.Z = op2b.Pt.Z;
DiscardLeftSide = (op2b.Pt.X > op2.Pt.X);
}
j.OutPt1 = op1;
j.OutPt2 = op2;
return this.JoinHorz(op1, op1b, op2, op2b, Pt, DiscardLeftSide);
}
else
{
//nb: For non-horizontal joins ...
// 1. Jr.OutPt1.Pt.Y == Jr.OutPt2.Pt.Y
// 2. Jr.OutPt1.Pt > Jr.OffPt.Y
//make sure the polygons are correctly oriented ...
op1b = op1.Next;
while ((ClipperLib.IntPoint.op_Equality(op1b.Pt, op1.Pt)) && (op1b !== op1))
op1b = op1b.Next;
var Reverse1 = ((op1b.Pt.Y > op1.Pt.Y) || !ClipperLib.ClipperBase.SlopesEqual4(op1.Pt, op1b.Pt, j.OffPt, this.m_UseFullRange));
if (Reverse1)
{
op1b = op1.Prev;
while ((ClipperLib.IntPoint.op_Equality(op1b.Pt, op1.Pt)) && (op1b !== op1))
op1b = op1b.Prev;
if ((op1b.Pt.Y > op1.Pt.Y) || !ClipperLib.ClipperBase.SlopesEqual4(op1.Pt, op1b.Pt, j.OffPt, this.m_UseFullRange))
return false;
}
op2b = op2.Next;
while ((ClipperLib.IntPoint.op_Equality(op2b.Pt, op2.Pt)) && (op2b !== op2))
op2b = op2b.Next;
var Reverse2 = ((op2b.Pt.Y > op2.Pt.Y) || !ClipperLib.ClipperBase.SlopesEqual4(op2.Pt, op2b.Pt, j.OffPt, this.m_UseFullRange));
if (Reverse2)
{
op2b = op2.Prev;
while ((ClipperLib.IntPoint.op_Equality(op2b.Pt, op2.Pt)) && (op2b !== op2))
op2b = op2b.Prev;
if ((op2b.Pt.Y > op2.Pt.Y) || !ClipperLib.ClipperBase.SlopesEqual4(op2.Pt, op2b.Pt, j.OffPt, this.m_UseFullRange))
return false;
}
if ((op1b === op1) || (op2b === op2) || (op1b === op2b) ||
((outRec1 === outRec2) && (Reverse1 === Reverse2)))
return false;
if (Reverse1)
{
op1b = this.DupOutPt(op1, false);
op2b = this.DupOutPt(op2, true);
op1.Prev = op2;
op2.Next = op1;
op1b.Next = op2b;
op2b.Prev = op1b;
j.OutPt1 = op1;
j.OutPt2 = op1b;
return true;
}
else
{
op1b = this.DupOutPt(op1, true);
op2b = this.DupOutPt(op2, false);
op1.Next = op2;
op2.Prev = op1;
op1b.Prev = op2b;
op2b.Next = op1b;
j.OutPt1 = op1;
j.OutPt2 = op1b;
return true;
}
}
};
ClipperLib.Clipper.GetBounds = function (paths)
{
var i = 0,
cnt = paths.length;
while (i < cnt && paths[i].length === 0) i++;
if (i === cnt) return new ClipperLib.IntRect(0, 0, 0, 0);
var result = new ClipperLib.IntRect();
result.left = paths[i][0].X;
result.right = result.left;
result.top = paths[i][0].Y;
result.bottom = result.top;
for (; i < cnt; i++)
for (var j = 0, jlen = paths[i].length; j < jlen; j++)
{
if (paths[i][j].X < result.left) result.left = paths[i][j].X;
else if (paths[i][j].X > result.right) result.right = paths[i][j].X;
if (paths[i][j].Y < result.top) result.top = paths[i][j].Y;
else if (paths[i][j].Y > result.bottom) result.bottom = paths[i][j].Y;
}
return result;
}
ClipperLib.Clipper.prototype.GetBounds2 = function (ops)
{
var opStart = ops;
var result = new ClipperLib.IntRect();
result.left = ops.Pt.X;
result.right = ops.Pt.X;
result.top = ops.Pt.Y;
result.bottom = ops.Pt.Y;
ops = ops.Next;
while (ops !== opStart)
{
if (ops.Pt.X < result.left)
result.left = ops.Pt.X;
if (ops.Pt.X > result.right)
result.right = ops.Pt.X;
if (ops.Pt.Y < result.top)
result.top = ops.Pt.Y;
if (ops.Pt.Y > result.bottom)
result.bottom = ops.Pt.Y;
ops = ops.Next;
}
return result;
};
ClipperLib.Clipper.PointInPolygon = function (pt, path)
{
//returns 0 if false, +1 if true, -1 if pt ON polygon boundary
//See "The Point in Polygon Problem for Arbitrary Polygons" by Hormann & Agathos
//http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.5498&rep=rep1&type=pdf
var result = 0,
cnt = path.length;
if (cnt < 3)
return 0;
var ip = path[0];
for (var i = 1; i <= cnt; ++i)
{
var ipNext = (i === cnt ? path[0] : path[i]);
if (ipNext.Y === pt.Y)
{
if ((ipNext.X === pt.X) || (ip.Y === pt.Y && ((ipNext.X > pt.X) === (ip.X < pt.X))))
return -1;
}
if ((ip.Y < pt.Y) !== (ipNext.Y < pt.Y))
{
if (ip.X >= pt.X)
{
if (ipNext.X > pt.X)
result = 1 - result;
else
{
var d = (ip.X - pt.X) * (ipNext.Y - pt.Y) - (ipNext.X - pt.X) * (ip.Y - pt.Y);
if (d === 0)
return -1;
else if ((d > 0) === (ipNext.Y > ip.Y))
result = 1 - result;
}
}
else
{
if (ipNext.X > pt.X)
{
var d = (ip.X - pt.X) * (ipNext.Y - pt.Y) - (ipNext.X - pt.X) * (ip.Y - pt.Y);
if (d === 0)
return -1;
else if ((d > 0) === (ipNext.Y > ip.Y))
result = 1 - result;
}
}
}
ip = ipNext;
}
return result;
};
ClipperLib.Clipper.prototype.PointInPolygon = function (pt, op)
{
//returns 0 if false, +1 if true, -1 if pt ON polygon boundary
var result = 0;
var startOp = op;
var ptx = pt.X,
pty = pt.Y;
var poly0x = op.Pt.X,
poly0y = op.Pt.Y;
do {
op = op.Next;
var poly1x = op.Pt.X,
poly1y = op.Pt.Y;
if (poly1y === pty)
{
if ((poly1x === ptx) || (poly0y === pty && ((poly1x > ptx) === (poly0x < ptx))))
return -1;
}
if ((poly0y < pty) !== (poly1y < pty))
{
if (poly0x >= ptx)
{
if (poly1x > ptx)
result = 1 - result;
else
{
var d = (poly0x - ptx) * (poly1y - pty) - (poly1x - ptx) * (poly0y - pty);
if (d === 0)
return -1;
if ((d > 0) === (poly1y > poly0y))
result = 1 - result;
}
}
else
{
if (poly1x > ptx)
{
var d = (poly0x - ptx) * (poly1y - pty) - (poly1x - ptx) * (poly0y - pty);
if (d === 0)
return -1;
if ((d > 0) === (poly1y > poly0y))
result = 1 - result;
}
}
}
poly0x = poly1x;
poly0y = poly1y;
} while (startOp !== op);
return result;
};
ClipperLib.Clipper.prototype.Poly2ContainsPoly1 = function (outPt1, outPt2)
{
var op = outPt1;
do {
//nb: PointInPolygon returns 0 if false, +1 if true, -1 if pt on polygon
var res = this.PointInPolygon(op.Pt, outPt2);
if (res >= 0)
return res > 0;
op = op.Next;
}
while (op !== outPt1)
return true;
};
ClipperLib.Clipper.prototype.FixupFirstLefts1 = function (OldOutRec, NewOutRec)
{
var outRec, firstLeft;
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
outRec = this.m_PolyOuts[i];
firstLeft = ClipperLib.Clipper.ParseFirstLeft(outRec.FirstLeft);
if (outRec.Pts !== null && firstLeft === OldOutRec)
{
if (this.Poly2ContainsPoly1(outRec.Pts, NewOutRec.Pts))
outRec.FirstLeft = NewOutRec;
}
}
}
ClipperLib.Clipper.prototype.FixupFirstLefts2 = function (innerOutRec, outerOutRec)
{
//A polygon has split into two such that one is now the inner of the other.
//It's possible that these polygons now wrap around other polygons, so check
//every polygon that's also contained by OuterOutRec's FirstLeft container
//(including nil) to see if they've become inner to the new inner polygon ...
var orfl = outerOutRec.FirstLeft;
var outRec, firstLeft;
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
outRec = this.m_PolyOuts[i];
if (outRec.Pts === null || outRec === outerOutRec || outRec === innerOutRec)
continue;
firstLeft = ClipperLib.Clipper.ParseFirstLeft(outRec.FirstLeft);
if (firstLeft !== orfl && firstLeft !== innerOutRec && firstLeft !== outerOutRec)
continue;
if (this.Poly2ContainsPoly1(outRec.Pts, innerOutRec.Pts))
outRec.FirstLeft = innerOutRec;
else if (this.Poly2ContainsPoly1(outRec.Pts, outerOutRec.Pts))
outRec.FirstLeft = outerOutRec;
else if (outRec.FirstLeft === innerOutRec || outRec.FirstLeft === outerOutRec)
outRec.FirstLeft = orfl;
}
}
ClipperLib.Clipper.prototype.FixupFirstLefts3 = function (OldOutRec, NewOutRec)
{
//same as FixupFirstLefts1 but doesn't call Poly2ContainsPoly1()
var outRec;
var firstLeft;
for (var i = 0, ilen = this.m_PolyOuts.length; i < ilen; i++)
{
outRec = this.m_PolyOuts[i];
firstLeft = ClipperLib.Clipper.ParseFirstLeft(outRec.FirstLeft);
if (outRec.Pts !== null && firstLeft === OldOutRec)
outRec.FirstLeft = NewOutRec;
}
}
ClipperLib.Clipper.ParseFirstLeft = function (FirstLeft)
{
while (FirstLeft !== null && FirstLeft.Pts === null)
FirstLeft = FirstLeft.FirstLeft;
return FirstLeft;
};
ClipperLib.Clipper.prototype.JoinCommonEdges = function ()
{
for (var i = 0, ilen = this.m_Joins.length; i < ilen; i++)
{
var join = this.m_Joins[i];
var outRec1 = this.GetOutRec(join.OutPt1.Idx);
var outRec2 = this.GetOutRec(join.OutPt2.Idx);
if (outRec1.Pts === null || outRec2.Pts === null)
continue;
if (outRec1.IsOpen || outRec2.IsOpen)
{
continue;
}
//get the polygon fragment with the correct hole state (FirstLeft)
//before calling JoinPoints() ...
var holeStateRec;
if (outRec1 === outRec2)
holeStateRec = outRec1;
else if (this.OutRec1RightOfOutRec2(outRec1, outRec2))
holeStateRec = outRec2;
else if (this.OutRec1RightOfOutRec2(outRec2, outRec1))
holeStateRec = outRec1;
else
holeStateRec = this.GetLowermostRec(outRec1, outRec2);
if (!this.JoinPoints(join, outRec1, outRec2)) continue;
if (outRec1 === outRec2)
{
//instead of joining two polygons, we've just created a new one by
//splitting one polygon into two.
outRec1.Pts = join.OutPt1;
outRec1.BottomPt = null;
outRec2 = this.CreateOutRec();
outRec2.Pts = join.OutPt2;
//update all OutRec2.Pts Idx's ...
this.UpdateOutPtIdxs(outRec2);
if (this.Poly2ContainsPoly1(outRec2.Pts, outRec1.Pts))
{
//outRec1 contains outRec2 ...
outRec2.IsHole = !outRec1.IsHole;
outRec2.FirstLeft = outRec1;
if (this.m_UsingPolyTree)
this.FixupFirstLefts2(outRec2, outRec1);
if ((outRec2.IsHole ^ this.ReverseSolution) == (this.Area$1(outRec2) > 0))
this.ReversePolyPtLinks(outRec2.Pts);
}
else if (this.Poly2ContainsPoly1(outRec1.Pts, outRec2.Pts))
{
//outRec2 contains outRec1 ...
outRec2.IsHole = outRec1.IsHole;
outRec1.IsHole = !outRec2.IsHole;
outRec2.FirstLeft = outRec1.FirstLeft;
outRec1.FirstLeft = outRec2;
if (this.m_UsingPolyTree)
this.FixupFirstLefts2(outRec1, outRec2);
if ((outRec1.IsHole ^ this.ReverseSolution) == (this.Area$1(outRec1) > 0))
this.ReversePolyPtLinks(outRec1.Pts);
}
else
{
//the 2 polygons are completely separate ...
outRec2.IsHole = outRec1.IsHole;
outRec2.FirstLeft = outRec1.FirstLeft;
//fixup FirstLeft pointers that may need reassigning to OutRec2
if (this.m_UsingPolyTree)
this.FixupFirstLefts1(outRec1, outRec2);
}
}
else
{
//joined 2 polygons together ...
outRec2.Pts = null;
outRec2.BottomPt = null;
outRec2.Idx = outRec1.Idx;
outRec1.IsHole = holeStateRec.IsHole;
if (holeStateRec === outRec2)
outRec1.FirstLeft = outRec2.FirstLeft;
outRec2.FirstLeft = outRec1;
//fixup FirstLeft pointers that may need reassigning to OutRec1
if (this.m_UsingPolyTree)
this.FixupFirstLefts3(outRec2, outRec1);
}
}
};
ClipperLib.Clipper.prototype.UpdateOutPtIdxs = function (outrec)
{
var op = outrec.Pts;
do {
op.Idx = outrec.Idx;
op = op.Prev;
}
while (op !== outrec.Pts)
};
ClipperLib.Clipper.prototype.DoSimplePolygons = function ()
{
var i = 0;
while (i < this.m_PolyOuts.length)
{
var outrec = this.m_PolyOuts[i++];
var op = outrec.Pts;
if (op === null || outrec.IsOpen)
continue;
do //for each Pt in Polygon until duplicate found do ...
{
var op2 = op.Next;
while (op2 !== outrec.Pts)
{
if ((ClipperLib.IntPoint.op_Equality(op.Pt, op2.Pt)) && op2.Next !== op && op2.Prev !== op)
{
//split the polygon into two ...
var op3 = op.Prev;
var op4 = op2.Prev;
op.Prev = op4;
op4.Next = op;
op2.Prev = op3;
op3.Next = op2;
outrec.Pts = op;
var outrec2 = this.CreateOutRec();
outrec2.Pts = op2;
this.UpdateOutPtIdxs(outrec2);
if (this.Poly2ContainsPoly1(outrec2.Pts, outrec.Pts))
{
//OutRec2 is contained by OutRec1 ...
outrec2.IsHole = !outrec.IsHole;
outrec2.FirstLeft = outrec;
if (this.m_UsingPolyTree) this.FixupFirstLefts2(outrec2, outrec);
}
else if (this.Poly2ContainsPoly1(outrec.Pts, outrec2.Pts))
{
//OutRec1 is contained by OutRec2 ...
outrec2.IsHole = outrec.IsHole;
outrec.IsHole = !outrec2.IsHole;
outrec2.FirstLeft = outrec.FirstLeft;
outrec.FirstLeft = outrec2;
if (this.m_UsingPolyTree) this.FixupFirstLefts2(outrec, outrec2);
}
else
{
//the 2 polygons are separate ...
outrec2.IsHole = outrec.IsHole;
outrec2.FirstLeft = outrec.FirstLeft;
if (this.m_UsingPolyTree) this.FixupFirstLefts1(outrec, outrec2);
}
op2 = op;
//ie get ready for the next iteration
}
op2 = op2.Next;
}
op = op.Next;
}
while (op !== outrec.Pts)
}
};
ClipperLib.Clipper.Area = function (poly)
{
if (!Array.isArray(poly))
return 0;
var cnt = poly.length;
if (cnt < 3)
return 0;
var a = 0;
for (var i = 0, j = cnt - 1; i < cnt; ++i)
{
a += (poly[j].X + poly[i].X) * (poly[j].Y - poly[i].Y);
j = i;
}
return -a * 0.5;
};
ClipperLib.Clipper.prototype.Area = function (op)
{
var opFirst = op;
if (op === null) return 0;
var a = 0;
do {
a = a + (op.Prev.Pt.X + op.Pt.X) * (op.Prev.Pt.Y - op.Pt.Y);
op = op.Next;
} while (op !== opFirst); // && typeof op !== 'undefined');
return a * 0.5;
}
ClipperLib.Clipper.prototype.Area$1 = function (outRec)
{
return this.Area(outRec.Pts);
};
ClipperLib.Clipper.SimplifyPolygon = function (poly, fillType)
{
var result = new Array();
var c = new ClipperLib.Clipper(0);
c.StrictlySimple = true;
c.AddPath(poly, ClipperLib.PolyType.ptSubject, true);
c.Execute(ClipperLib.ClipType.ctUnion, result, fillType, fillType);
return result;
};
ClipperLib.Clipper.SimplifyPolygons = function (polys, fillType)
{
if (typeof (fillType) === "undefined") fillType = ClipperLib.PolyFillType.pftEvenOdd;
var result = new Array();
var c = new ClipperLib.Clipper(0);
c.StrictlySimple = true;
c.AddPaths(polys, ClipperLib.PolyType.ptSubject, true);
c.Execute(ClipperLib.ClipType.ctUnion, result, fillType, fillType);
return result;
};
ClipperLib.Clipper.DistanceSqrd = function (pt1, pt2)
{
var dx = (pt1.X - pt2.X);
var dy = (pt1.Y - pt2.Y);
return (dx * dx + dy * dy);
};
ClipperLib.Clipper.DistanceFromLineSqrd = function (pt, ln1, ln2)
{
//The equation of a line in general form (Ax + By + C = 0)
//given 2 points (x¹,y¹) & (x²,y²) is ...
//(y¹ - y²)x + (x² - x¹)y + (y² - y¹)x¹ - (x² - x¹)y¹ = 0
//A = (y¹ - y²); B = (x² - x¹); C = (y² - y¹)x¹ - (x² - x¹)y¹
//perpendicular distance of point (x³,y³) = (Ax³ + By³ + C)/Sqrt(A² + B²)
//see http://en.wikipedia.org/wiki/Perpendicular_distance
var A = ln1.Y - ln2.Y;
var B = ln2.X - ln1.X;
var C = A * ln1.X + B * ln1.Y;
C = A * pt.X + B * pt.Y - C;
return (C * C) / (A * A + B * B);
};
ClipperLib.Clipper.SlopesNearCollinear = function (pt1, pt2, pt3, distSqrd)
{
//this function is more accurate when the point that's GEOMETRICALLY
//between the other 2 points is the one that's tested for distance.
//nb: with 'spikes', either pt1 or pt3 is geometrically between the other pts
if (Math.abs(pt1.X - pt2.X) > Math.abs(pt1.Y - pt2.Y))
{
if ((pt1.X > pt2.X) === (pt1.X < pt3.X))
return ClipperLib.Clipper.DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.X > pt1.X) === (pt2.X < pt3.X))
return ClipperLib.Clipper.DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return ClipperLib.Clipper.DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
}
else
{
if ((pt1.Y > pt2.Y) === (pt1.Y < pt3.Y))
return ClipperLib.Clipper.DistanceFromLineSqrd(pt1, pt2, pt3) < distSqrd;
else if ((pt2.Y > pt1.Y) === (pt2.Y < pt3.Y))
return ClipperLib.Clipper.DistanceFromLineSqrd(pt2, pt1, pt3) < distSqrd;
else
return ClipperLib.Clipper.DistanceFromLineSqrd(pt3, pt1, pt2) < distSqrd;
}
}
ClipperLib.Clipper.PointsAreClose = function (pt1, pt2, distSqrd)
{
var dx = pt1.X - pt2.X;
var dy = pt1.Y - pt2.Y;
return ((dx * dx) + (dy * dy) <= distSqrd);
};
ClipperLib.Clipper.ExcludeOp = function (op)
{
var result = op.Prev;
result.Next = op.Next;
op.Next.Prev = result;
result.Idx = 0;
return result;
};
ClipperLib.Clipper.CleanPolygon = function (path, distance)
{
if (typeof (distance) === "undefined") distance = 1.415;
//distance = proximity in units/pixels below which vertices will be stripped.
//Default ~= sqrt(2) so when adjacent vertices or semi-adjacent vertices have
//both x & y coords within 1 unit, then the second vertex will be stripped.
var cnt = path.length;
if (cnt === 0)
return new Array();
var outPts = new Array(cnt);
for (var i = 0; i < cnt; ++i)
outPts[i] = new ClipperLib.OutPt();
for (var i = 0; i < cnt; ++i)
{
outPts[i].Pt = path[i];
outPts[i].Next = outPts[(i + 1) % cnt];
outPts[i].Next.Prev = outPts[i];
outPts[i].Idx = 0;
}
var distSqrd = distance * distance;
var op = outPts[0];
while (op.Idx === 0 && op.Next !== op.Prev)
{
if (ClipperLib.Clipper.PointsAreClose(op.Pt, op.Prev.Pt, distSqrd))
{
op = ClipperLib.Clipper.ExcludeOp(op);
cnt--;
}
else if (ClipperLib.Clipper.PointsAreClose(op.Prev.Pt, op.Next.Pt, distSqrd))
{
ClipperLib.Clipper.ExcludeOp(op.Next);
op = ClipperLib.Clipper.ExcludeOp(op);
cnt -= 2;
}
else if (ClipperLib.Clipper.SlopesNearCollinear(op.Prev.Pt, op.Pt, op.Next.Pt, distSqrd))
{
op = ClipperLib.Clipper.ExcludeOp(op);
cnt--;
}
else
{
op.Idx = 1;
op = op.Next;
}
}
if (cnt < 3)
cnt = 0;
var result = new Array(cnt);
for (var i = 0; i < cnt; ++i)
{
result[i] = new ClipperLib.IntPoint1(op.Pt);
op = op.Next;
}
outPts = null;
return result;
};
ClipperLib.Clipper.CleanPolygons = function (polys, distance)
{
var result = new Array(polys.length);
for (var i = 0, ilen = polys.length; i < ilen; i++)
result[i] = ClipperLib.Clipper.CleanPolygon(polys[i], distance);
return result;
};
ClipperLib.Clipper.Minkowski = function (pattern, path, IsSum, IsClosed)
{
var delta = (IsClosed ? 1 : 0);
var polyCnt = pattern.length;
var pathCnt = path.length;
var result = new Array();
if (IsSum)
for (var i = 0; i < pathCnt; i++)
{
var p = new Array(polyCnt);
for (var j = 0, jlen = pattern.length, ip = pattern[j]; j < jlen; j++, ip = pattern[j])
p[j] = new ClipperLib.IntPoint2(path[i].X + ip.X, path[i].Y + ip.Y);
result.push(p);
}
else
for (var i = 0; i < pathCnt; i++)
{
var p = new Array(polyCnt);
for (var j = 0, jlen = pattern.length, ip = pattern[j]; j < jlen; j++, ip = pattern[j])
p[j] = new ClipperLib.IntPoint2(path[i].X - ip.X, path[i].Y - ip.Y);
result.push(p);
}
var quads = new Array();
for (var i = 0; i < pathCnt - 1 + delta; i++)
for (var j = 0; j < polyCnt; j++)
{
var quad = new Array();
quad.push(result[i % pathCnt][j % polyCnt]);
quad.push(result[(i + 1) % pathCnt][j % polyCnt]);
quad.push(result[(i + 1) % pathCnt][(j + 1) % polyCnt]);
quad.push(result[i % pathCnt][(j + 1) % polyCnt]);
if (!ClipperLib.Clipper.Orientation(quad))
quad.reverse();
quads.push(quad);
}
return quads;
};
ClipperLib.Clipper.MinkowskiSum = function (pattern, path_or_paths, pathIsClosed)
{
if (!(path_or_paths[0] instanceof Array))
{
var path = path_or_paths;
var paths = ClipperLib.Clipper.Minkowski(pattern, path, true, pathIsClosed);
var c = new ClipperLib.Clipper();
c.AddPaths(paths, ClipperLib.PolyType.ptSubject, true);
c.Execute(ClipperLib.ClipType.ctUnion, paths, ClipperLib.PolyFillType.pftNonZero, ClipperLib.PolyFillType.pftNonZero);
return paths;
}
else
{
var paths = path_or_paths;
var solution = new ClipperLib.Paths();
var c = new ClipperLib.Clipper();
for (var i = 0; i < paths.length; ++i)
{
var tmp = ClipperLib.Clipper.Minkowski(pattern, paths[i], true, pathIsClosed);
c.AddPaths(tmp, ClipperLib.PolyType.ptSubject, true);
if (pathIsClosed)
{
var path = ClipperLib.Clipper.TranslatePath(paths[i], pattern[0]);
c.AddPath(path, ClipperLib.PolyType.ptClip, true);
}
}
c.Execute(ClipperLib.ClipType.ctUnion, solution,
ClipperLib.PolyFillType.pftNonZero, ClipperLib.PolyFillType.pftNonZero);
return solution;
}
}
ClipperLib.Clipper.TranslatePath = function (path, delta)
{
var outPath = new ClipperLib.Path();
for (var i = 0; i < path.length; i++)
outPath.push(new ClipperLib.IntPoint2(path[i].X + delta.X, path[i].Y + delta.Y));
return outPath;
}
ClipperLib.Clipper.MinkowskiDiff = function (poly1, poly2)
{
var paths = ClipperLib.Clipper.Minkowski(poly1, poly2, false, true);
var c = new ClipperLib.Clipper();
c.AddPaths(paths, ClipperLib.PolyType.ptSubject, true);
c.Execute(ClipperLib.ClipType.ctUnion, paths, ClipperLib.PolyFillType.pftNonZero, ClipperLib.PolyFillType.pftNonZero);
return paths;
}
ClipperLib.Clipper.PolyTreeToPaths = function (polytree)
{
var result = new Array();
//result.set_Capacity(polytree.get_Total());
ClipperLib.Clipper.AddPolyNodeToPaths(polytree, ClipperLib.Clipper.NodeType.ntAny, result);
return result;
};
ClipperLib.Clipper.AddPolyNodeToPaths = function (polynode, nt, paths)
{
var match = true;
switch (nt)
{
case ClipperLib.Clipper.NodeType.ntOpen:
return;
case ClipperLib.Clipper.NodeType.ntClosed:
match = !polynode.IsOpen;
break;
default:
break;
}
if (polynode.m_polygon.length > 0 && match)
paths.push(polynode.m_polygon);
for (var $i3 = 0, $t3 = polynode.Childs(), $l3 = $t3.length, pn = $t3[$i3]; $i3 < $l3; $i3++, pn = $t3[$i3])
ClipperLib.Clipper.AddPolyNodeToPaths(pn, nt, paths);
};
ClipperLib.Clipper.OpenPathsFromPolyTree = function (polytree)
{
var result = new ClipperLib.Paths();
//result.set_Capacity(polytree.ChildCount());
for (var i = 0, ilen = polytree.ChildCount(); i < ilen; i++)
if (polytree.Childs()[i].IsOpen)
result.push(polytree.Childs()[i].m_polygon);
return result;
};
ClipperLib.Clipper.ClosedPathsFromPolyTree = function (polytree)
{
var result = new ClipperLib.Paths();
//result.set_Capacity(polytree.Total());
ClipperLib.Clipper.AddPolyNodeToPaths(polytree, ClipperLib.Clipper.NodeType.ntClosed, result);
return result;
};
Inherit(ClipperLib.Clipper, ClipperLib.ClipperBase);
ClipperLib.Clipper.NodeType = {
ntAny: 0,
ntOpen: 1,
ntClosed: 2
};
/**
* @constructor
*/
ClipperLib.ClipperOffset = function (miterLimit, arcTolerance)
{
if (typeof (miterLimit) === "undefined") miterLimit = 2;
if (typeof (arcTolerance) === "undefined") arcTolerance = ClipperLib.ClipperOffset.def_arc_tolerance;
this.m_destPolys = new ClipperLib.Paths();
this.m_srcPoly = new ClipperLib.Path();
this.m_destPoly = new ClipperLib.Path();
this.m_normals = new Array();
this.m_delta = 0;
this.m_sinA = 0;
this.m_sin = 0;
this.m_cos = 0;
this.m_miterLim = 0;
this.m_StepsPerRad = 0;
this.m_lowest = new ClipperLib.IntPoint0();
this.m_polyNodes = new ClipperLib.PolyNode();
this.MiterLimit = miterLimit;
this.ArcTolerance = arcTolerance;
this.m_lowest.X = -1;
};
ClipperLib.ClipperOffset.two_pi = 6.28318530717959;
ClipperLib.ClipperOffset.def_arc_tolerance = 0.25;
ClipperLib.ClipperOffset.prototype.Clear = function ()
{
ClipperLib.Clear(this.m_polyNodes.Childs());
this.m_lowest.X = -1;
};
ClipperLib.ClipperOffset.Round = ClipperLib.Clipper.Round;
ClipperLib.ClipperOffset.prototype.AddPath = function (path, joinType, endType)
{
var highI = path.length - 1;
if (highI < 0)
return;
var newNode = new ClipperLib.PolyNode();
newNode.m_jointype = joinType;
newNode.m_endtype = endType;
//strip duplicate points from path and also get index to the lowest point ...
if (endType === ClipperLib.EndType.etClosedLine || endType === ClipperLib.EndType.etClosedPolygon)
while (highI > 0 && ClipperLib.IntPoint.op_Equality(path[0], path[highI]))
highI--;
//newNode.m_polygon.set_Capacity(highI + 1);
newNode.m_polygon.push(path[0]);
var j = 0,
k = 0;
for (var i = 1; i <= highI; i++)
if (ClipperLib.IntPoint.op_Inequality(newNode.m_polygon[j], path[i]))
{
j++;
newNode.m_polygon.push(path[i]);
if (path[i].Y > newNode.m_polygon[k].Y || (path[i].Y === newNode.m_polygon[k].Y && path[i].X < newNode.m_polygon[k].X))
k = j;
}
if (endType === ClipperLib.EndType.etClosedPolygon && j < 2) return;
this.m_polyNodes.AddChild(newNode);
//if this path's lowest pt is lower than all the others then update m_lowest
if (endType !== ClipperLib.EndType.etClosedPolygon)
return;
if (this.m_lowest.X < 0)
this.m_lowest = new ClipperLib.IntPoint2(this.m_polyNodes.ChildCount() - 1, k);
else
{
var ip = this.m_polyNodes.Childs()[this.m_lowest.X].m_polygon[this.m_lowest.Y];
if (newNode.m_polygon[k].Y > ip.Y || (newNode.m_polygon[k].Y === ip.Y && newNode.m_polygon[k].X < ip.X))
this.m_lowest = new ClipperLib.IntPoint2(this.m_polyNodes.ChildCount() - 1, k);
}
};
ClipperLib.ClipperOffset.prototype.AddPaths = function (paths, joinType, endType)
{
for (var i = 0, ilen = paths.length; i < ilen; i++)
this.AddPath(paths[i], joinType, endType);
};
ClipperLib.ClipperOffset.prototype.FixOrientations = function ()
{
//fixup orientations of all closed paths if the orientation of the
//closed path with the lowermost vertex is wrong ...
if (this.m_lowest.X >= 0 && !ClipperLib.Clipper.Orientation(this.m_polyNodes.Childs()[this.m_lowest.X].m_polygon))
{
for (var i = 0; i < this.m_polyNodes.ChildCount(); i++)
{
var node = this.m_polyNodes.Childs()[i];
if (node.m_endtype === ClipperLib.EndType.etClosedPolygon || (node.m_endtype === ClipperLib.EndType.etClosedLine && ClipperLib.Clipper.Orientation(node.m_polygon)))
node.m_polygon.reverse();
}
}
else
{
for (var i = 0; i < this.m_polyNodes.ChildCount(); i++)
{
var node = this.m_polyNodes.Childs()[i];
if (node.m_endtype === ClipperLib.EndType.etClosedLine && !ClipperLib.Clipper.Orientation(node.m_polygon))
node.m_polygon.reverse();
}
}
};
ClipperLib.ClipperOffset.GetUnitNormal = function (pt1, pt2)
{
var dx = (pt2.X - pt1.X);
var dy = (pt2.Y - pt1.Y);
if ((dx === 0) && (dy === 0))
return new ClipperLib.DoublePoint2(0, 0);
var f = 1 / Math.sqrt(dx * dx + dy * dy);
dx *= f;
dy *= f;
return new ClipperLib.DoublePoint2(dy, -dx);
};
ClipperLib.ClipperOffset.prototype.DoOffset = function (delta)
{
this.m_destPolys = new Array();
this.m_delta = delta;
//if Zero offset, just copy any CLOSED polygons to m_p and return ...
if (ClipperLib.ClipperBase.near_zero(delta))
{
//this.m_destPolys.set_Capacity(this.m_polyNodes.ChildCount);
for (var i = 0; i < this.m_polyNodes.ChildCount(); i++)
{
var node = this.m_polyNodes.Childs()[i];
if (node.m_endtype === ClipperLib.EndType.etClosedPolygon)
this.m_destPolys.push(node.m_polygon);
}
return;
}
//see offset_triginometry3.svg in the documentation folder ...
if (this.MiterLimit > 2)
this.m_miterLim = 2 / (this.MiterLimit * this.MiterLimit);
else
this.m_miterLim = 0.5;
var y;
if (this.ArcTolerance <= 0)
y = ClipperLib.ClipperOffset.def_arc_tolerance;
else if (this.ArcTolerance > Math.abs(delta) * ClipperLib.ClipperOffset.def_arc_tolerance)
y = Math.abs(delta) * ClipperLib.ClipperOffset.def_arc_tolerance;
else
y = this.ArcTolerance;
//see offset_triginometry2.svg in the documentation folder ...
var steps = 3.14159265358979 / Math.acos(1 - y / Math.abs(delta));
this.m_sin = Math.sin(ClipperLib.ClipperOffset.two_pi / steps);
this.m_cos = Math.cos(ClipperLib.ClipperOffset.two_pi / steps);
this.m_StepsPerRad = steps / ClipperLib.ClipperOffset.two_pi;
if (delta < 0)
this.m_sin = -this.m_sin;
//this.m_destPolys.set_Capacity(this.m_polyNodes.ChildCount * 2);
for (var i = 0; i < this.m_polyNodes.ChildCount(); i++)
{
var node = this.m_polyNodes.Childs()[i];
this.m_srcPoly = node.m_polygon;
var len = this.m_srcPoly.length;
if (len === 0 || (delta <= 0 && (len < 3 || node.m_endtype !== ClipperLib.EndType.etClosedPolygon)))
continue;
this.m_destPoly = new Array();
if (len === 1)
{
if (node.m_jointype === ClipperLib.JoinType.jtRound)
{
var X = 1,
Y = 0;
for (var j = 1; j <= steps; j++)
{
this.m_destPoly.push(new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].X + X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].Y + Y * delta)));
var X2 = X;
X = X * this.m_cos - this.m_sin * Y;
Y = X2 * this.m_sin + Y * this.m_cos;
}
}
else
{
var X = -1,
Y = -1;
for (var j = 0; j < 4; ++j)
{
this.m_destPoly.push(new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].X + X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].Y + Y * delta)));
if (X < 0)
X = 1;
else if (Y < 0)
Y = 1;
else
X = -1;
}
}
this.m_destPolys.push(this.m_destPoly);
continue;
}
//build m_normals ...
this.m_normals.length = 0;
//this.m_normals.set_Capacity(len);
for (var j = 0; j < len - 1; j++)
this.m_normals.push(ClipperLib.ClipperOffset.GetUnitNormal(this.m_srcPoly[j], this.m_srcPoly[j + 1]));
if (node.m_endtype === ClipperLib.EndType.etClosedLine || node.m_endtype === ClipperLib.EndType.etClosedPolygon)
this.m_normals.push(ClipperLib.ClipperOffset.GetUnitNormal(this.m_srcPoly[len - 1], this.m_srcPoly[0]));
else
this.m_normals.push(new ClipperLib.DoublePoint1(this.m_normals[len - 2]));
if (node.m_endtype === ClipperLib.EndType.etClosedPolygon)
{
var k = len - 1;
for (var j = 0; j < len; j++)
k = this.OffsetPoint(j, k, node.m_jointype);
this.m_destPolys.push(this.m_destPoly);
}
else if (node.m_endtype === ClipperLib.EndType.etClosedLine)
{
var k = len - 1;
for (var j = 0; j < len; j++)
k = this.OffsetPoint(j, k, node.m_jointype);
this.m_destPolys.push(this.m_destPoly);
this.m_destPoly = new Array();
//re-build m_normals ...
var n = this.m_normals[len - 1];
for (var j = len - 1; j > 0; j--)
this.m_normals[j] = new ClipperLib.DoublePoint2(-this.m_normals[j - 1].X, -this.m_normals[j - 1].Y);
this.m_normals[0] = new ClipperLib.DoublePoint2(-n.X, -n.Y);
k = 0;
for (var j = len - 1; j >= 0; j--)
k = this.OffsetPoint(j, k, node.m_jointype);
this.m_destPolys.push(this.m_destPoly);
}
else
{
var k = 0;
for (var j = 1; j < len - 1; ++j)
k = this.OffsetPoint(j, k, node.m_jointype);
var pt1;
if (node.m_endtype === ClipperLib.EndType.etOpenButt)
{
var j = len - 1;
pt1 = new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_normals[j].X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_normals[j].Y * delta));
this.m_destPoly.push(pt1);
pt1 = new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X - this.m_normals[j].X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y - this.m_normals[j].Y * delta));
this.m_destPoly.push(pt1);
}
else
{
var j = len - 1;
k = len - 2;
this.m_sinA = 0;
this.m_normals[j] = new ClipperLib.DoublePoint2(-this.m_normals[j].X, -this.m_normals[j].Y);
if (node.m_endtype === ClipperLib.EndType.etOpenSquare)
this.DoSquare(j, k);
else
this.DoRound(j, k);
}
//re-build m_normals ...
for (var j = len - 1; j > 0; j--)
this.m_normals[j] = new ClipperLib.DoublePoint2(-this.m_normals[j - 1].X, -this.m_normals[j - 1].Y);
this.m_normals[0] = new ClipperLib.DoublePoint2(-this.m_normals[1].X, -this.m_normals[1].Y);
k = len - 1;
for (var j = k - 1; j > 0; --j)
k = this.OffsetPoint(j, k, node.m_jointype);
if (node.m_endtype === ClipperLib.EndType.etOpenButt)
{
pt1 = new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].X - this.m_normals[0].X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].Y - this.m_normals[0].Y * delta));
this.m_destPoly.push(pt1);
pt1 = new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].X + this.m_normals[0].X * delta), ClipperLib.ClipperOffset.Round(this.m_srcPoly[0].Y + this.m_normals[0].Y * delta));
this.m_destPoly.push(pt1);
}
else
{
k = 1;
this.m_sinA = 0;
if (node.m_endtype === ClipperLib.EndType.etOpenSquare)
this.DoSquare(0, 1);
else
this.DoRound(0, 1);
}
this.m_destPolys.push(this.m_destPoly);
}
}
};
ClipperLib.ClipperOffset.prototype.Execute = function ()
{
var a = arguments,
ispolytree = a[0] instanceof ClipperLib.PolyTree;
if (!ispolytree) // function (solution, delta)
{
var solution = a[0],
delta = a[1];
ClipperLib.Clear(solution);
this.FixOrientations();
this.DoOffset(delta);
//now clean up 'corners' ...
var clpr = new ClipperLib.Clipper(0);
clpr.AddPaths(this.m_destPolys, ClipperLib.PolyType.ptSubject, true);
if (delta > 0)
{
clpr.Execute(ClipperLib.ClipType.ctUnion, solution, ClipperLib.PolyFillType.pftPositive, ClipperLib.PolyFillType.pftPositive);
}
else
{
var r = ClipperLib.Clipper.GetBounds(this.m_destPolys);
var outer = new ClipperLib.Path();
outer.push(new ClipperLib.IntPoint2(r.left - 10, r.bottom + 10));
outer.push(new ClipperLib.IntPoint2(r.right + 10, r.bottom + 10));
outer.push(new ClipperLib.IntPoint2(r.right + 10, r.top - 10));
outer.push(new ClipperLib.IntPoint2(r.left - 10, r.top - 10));
clpr.AddPath(outer, ClipperLib.PolyType.ptSubject, true);
clpr.ReverseSolution = true;
clpr.Execute(ClipperLib.ClipType.ctUnion, solution, ClipperLib.PolyFillType.pftNegative, ClipperLib.PolyFillType.pftNegative);
if (solution.length > 0)
solution.splice(0, 1);
}
//console.log(JSON.stringify(solution));
}
else // function (polytree, delta)
{
var solution = a[0],
delta = a[1];
solution.Clear();
this.FixOrientations();
this.DoOffset(delta);
//now clean up 'corners' ...
var clpr = new ClipperLib.Clipper(0);
clpr.AddPaths(this.m_destPolys, ClipperLib.PolyType.ptSubject, true);
if (delta > 0)
{
clpr.Execute(ClipperLib.ClipType.ctUnion, solution, ClipperLib.PolyFillType.pftPositive, ClipperLib.PolyFillType.pftPositive);
}
else
{
var r = ClipperLib.Clipper.GetBounds(this.m_destPolys);
var outer = new ClipperLib.Path();
outer.push(new ClipperLib.IntPoint2(r.left - 10, r.bottom + 10));
outer.push(new ClipperLib.IntPoint2(r.right + 10, r.bottom + 10));
outer.push(new ClipperLib.IntPoint2(r.right + 10, r.top - 10));
outer.push(new ClipperLib.IntPoint2(r.left - 10, r.top - 10));
clpr.AddPath(outer, ClipperLib.PolyType.ptSubject, true);
clpr.ReverseSolution = true;
clpr.Execute(ClipperLib.ClipType.ctUnion, solution, ClipperLib.PolyFillType.pftNegative, ClipperLib.PolyFillType.pftNegative);
//remove the outer PolyNode rectangle ...
if (solution.ChildCount() === 1 && solution.Childs()[0].ChildCount() > 0)
{
var outerNode = solution.Childs()[0];
//solution.Childs.set_Capacity(outerNode.ChildCount);
solution.Childs()[0] = outerNode.Childs()[0];
solution.Childs()[0].m_Parent = solution;
for (var i = 1; i < outerNode.ChildCount(); i++)
solution.AddChild(outerNode.Childs()[i]);
}
else
solution.Clear();
}
}
};
ClipperLib.ClipperOffset.prototype.OffsetPoint = function (j, k, jointype)
{
//cross product ...
this.m_sinA = (this.m_normals[k].X * this.m_normals[j].Y - this.m_normals[j].X * this.m_normals[k].Y);
if (Math.abs(this.m_sinA * this.m_delta) < 1.0)
{
//dot product ...
var cosA = (this.m_normals[k].X * this.m_normals[j].X + this.m_normals[j].Y * this.m_normals[k].Y);
if (cosA > 0) // angle ==> 0 degrees
{
this.m_destPoly.push(new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_normals[k].X * this.m_delta),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_normals[k].Y * this.m_delta)));
return k;
}
//else angle ==> 180 degrees
}
else if (this.m_sinA > 1)
this.m_sinA = 1.0;
else if (this.m_sinA < -1)
this.m_sinA = -1.0;
if (this.m_sinA * this.m_delta < 0)
{
this.m_destPoly.push(new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_normals[k].X * this.m_delta),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_normals[k].Y * this.m_delta)));
this.m_destPoly.push(new ClipperLib.IntPoint1(this.m_srcPoly[j]));
this.m_destPoly.push(new ClipperLib.IntPoint2(ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_normals[j].X * this.m_delta),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_normals[j].Y * this.m_delta)));
}
else
switch (jointype)
{
case ClipperLib.JoinType.jtMiter:
{
var r = 1 + (this.m_normals[j].X * this.m_normals[k].X + this.m_normals[j].Y * this.m_normals[k].Y);
if (r >= this.m_miterLim)
this.DoMiter(j, k, r);
else
this.DoSquare(j, k);
break;
}
case ClipperLib.JoinType.jtSquare:
this.DoSquare(j, k);
break;
case ClipperLib.JoinType.jtRound:
this.DoRound(j, k);
break;
}
k = j;
return k;
};
ClipperLib.ClipperOffset.prototype.DoSquare = function (j, k)
{
var dx = Math.tan(Math.atan2(this.m_sinA,
this.m_normals[k].X * this.m_normals[j].X + this.m_normals[k].Y * this.m_normals[j].Y) / 4);
this.m_destPoly.push(new ClipperLib.IntPoint2(
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_delta * (this.m_normals[k].X - this.m_normals[k].Y * dx)),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_delta * (this.m_normals[k].Y + this.m_normals[k].X * dx))));
this.m_destPoly.push(new ClipperLib.IntPoint2(
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_delta * (this.m_normals[j].X + this.m_normals[j].Y * dx)),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_delta * (this.m_normals[j].Y - this.m_normals[j].X * dx))));
};
ClipperLib.ClipperOffset.prototype.DoMiter = function (j, k, r)
{
var q = this.m_delta / r;
this.m_destPoly.push(new ClipperLib.IntPoint2(
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + (this.m_normals[k].X + this.m_normals[j].X) * q),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + (this.m_normals[k].Y + this.m_normals[j].Y) * q)));
};
ClipperLib.ClipperOffset.prototype.DoRound = function (j, k)
{
var a = Math.atan2(this.m_sinA,
this.m_normals[k].X * this.m_normals[j].X + this.m_normals[k].Y * this.m_normals[j].Y);
var steps = Math.max(ClipperLib.Cast_Int32(ClipperLib.ClipperOffset.Round(this.m_StepsPerRad * Math.abs(a))), 1);
var X = this.m_normals[k].X,
Y = this.m_normals[k].Y,
X2;
for (var i = 0; i < steps; ++i)
{
this.m_destPoly.push(new ClipperLib.IntPoint2(
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + X * this.m_delta),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + Y * this.m_delta)));
X2 = X;
X = X * this.m_cos - this.m_sin * Y;
Y = X2 * this.m_sin + Y * this.m_cos;
}
this.m_destPoly.push(new ClipperLib.IntPoint2(
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].X + this.m_normals[j].X * this.m_delta),
ClipperLib.ClipperOffset.Round(this.m_srcPoly[j].Y + this.m_normals[j].Y * this.m_delta)));
};
ClipperLib.Error = function (message)
{
try
{
throw new Error(message);
}
catch (err)
{
alert(err.message);
}
};
// ---------------------------------------------
// JS extension by Timo 2013
ClipperLib.JS = {};
ClipperLib.JS.AreaOfPolygon = function (poly, scale)
{
if (!scale) scale = 1;
return ClipperLib.Clipper.Area(poly) / (scale * scale);
};
ClipperLib.JS.AreaOfPolygons = function (poly, scale)
{
if (!scale) scale = 1;
var area = 0;
for (var i = 0; i < poly.length; i++)
{
area += ClipperLib.Clipper.Area(poly[i]);
}
return area / (scale * scale);
};
ClipperLib.JS.BoundsOfPath = function (path, scale)
{
return ClipperLib.JS.BoundsOfPaths([path], scale);
};
ClipperLib.JS.BoundsOfPaths = function (paths, scale)
{
if (!scale) scale = 1;
var bounds = ClipperLib.Clipper.GetBounds(paths);
bounds.left /= scale;
bounds.bottom /= scale;
bounds.right /= scale;
bounds.top /= scale;
return bounds;
};
// Clean() joins vertices that are too near each other
// and causes distortion to offsetted polygons without cleaning
ClipperLib.JS.Clean = function (polygon, delta)
{
if (!(polygon instanceof Array)) return [];
var isPolygons = polygon[0] instanceof Array;
var polygon = ClipperLib.JS.Clone(polygon);
if (typeof delta !== "number" || delta === null)
{
ClipperLib.Error("Delta is not a number in Clean().");
return polygon;
}
if (polygon.length === 0 || (polygon.length === 1 && polygon[0].length === 0) || delta < 0) return polygon;
if (!isPolygons) polygon = [polygon];
var k_length = polygon.length;
var len, poly, result, d, p, j, i;
var results = [];
for (var k = 0; k < k_length; k++)
{
poly = polygon[k];
len = poly.length;
if (len === 0) continue;
else if (len < 3)
{
result = poly;
results.push(result);
continue;
}
result = poly;
d = delta * delta;
//d = Math.floor(c_delta * c_delta);
p = poly[0];
j = 1;
for (i = 1; i < len; i++)
{
if ((poly[i].X - p.X) * (poly[i].X - p.X) +
(poly[i].Y - p.Y) * (poly[i].Y - p.Y) <= d)
continue;
result[j] = poly[i];
p = poly[i];
j++;
}
p = poly[j - 1];
if ((poly[0].X - p.X) * (poly[0].X - p.X) +
(poly[0].Y - p.Y) * (poly[0].Y - p.Y) <= d)
j--;
if (j < len)
result.splice(j, len - j);
if (result.length) results.push(result);
}
if (!isPolygons && results.length) results = results[0];
else if (!isPolygons && results.length === 0) results = [];
else if (isPolygons && results.length === 0) results = [
[]
];
return results;
}
// Make deep copy of Polygons or Polygon
// so that also IntPoint objects are cloned and not only referenced
// This should be the fastest way
ClipperLib.JS.Clone = function (polygon)
{
if (!(polygon instanceof Array)) return [];
if (polygon.length === 0) return [];
else if (polygon.length === 1 && polygon[0].length === 0) return [
[]
];
var isPolygons = polygon[0] instanceof Array;
if (!isPolygons) polygon = [polygon];
var len = polygon.length,
plen, i, j, result;
var results = new Array(len);
for (i = 0; i < len; i++)
{
plen = polygon[i].length;
result = new Array(plen);
for (j = 0; j < plen; j++)
{
result[j] = {
X: polygon[i][j].X,
Y: polygon[i][j].Y
};
}
results[i] = result;
}
if (!isPolygons) results = results[0];
return results;
};
// Removes points that doesn't affect much to the visual appearance.
// If middle point is at or under certain distance (tolerance) of the line segment between
// start and end point, the middle point is removed.
ClipperLib.JS.Lighten = function (polygon, tolerance)
{
if (!(polygon instanceof Array)) return [];
if (typeof tolerance !== "number" || tolerance === null)
{
ClipperLib.Error("Tolerance is not a number in Lighten().")
return ClipperLib.JS.Clone(polygon);
}
if (polygon.length === 0 || (polygon.length === 1 && polygon[0].length === 0) || tolerance < 0)
{
return ClipperLib.JS.Clone(polygon);
}
var isPolygons = polygon[0] instanceof Array;
if (!isPolygons) polygon = [polygon];
var i, j, poly, k, poly2, plen, A, B, P, d, rem, addlast;
var bxax, byay, l, ax, ay;
var len = polygon.length;
var toleranceSq = tolerance * tolerance;
var results = [];
for (i = 0; i < len; i++)
{
poly = polygon[i];
plen = poly.length;
if (plen === 0) continue;
for (k = 0; k < 1000000; k++) // could be forever loop, but wiser to restrict max repeat count
{
poly2 = [];
plen = poly.length;
// the first have to added to the end, if first and last are not the same
// this way we ensure that also the actual last point can be removed if needed
if (poly[plen - 1].X !== poly[0].X || poly[plen - 1].Y !== poly[0].Y)
{
addlast = 1;
poly.push(
{
X: poly[0].X,
Y: poly[0].Y
});
plen = poly.length;
}
else addlast = 0;
rem = []; // Indexes of removed points
for (j = 0; j < plen - 2; j++)
{
A = poly[j]; // Start point of line segment
P = poly[j + 1]; // Middle point. This is the one to be removed.
B = poly[j + 2]; // End point of line segment
ax = A.X;
ay = A.Y;
bxax = B.X - ax;
byay = B.Y - ay;
if (bxax !== 0 || byay !== 0) // To avoid Nan, when A==P && P==B. And to avoid peaks (A==B && A!=P), which have lenght, but not area.
{
l = ((P.X - ax) * bxax + (P.Y - ay) * byay) / (bxax * bxax + byay * byay);
if (l > 1)
{
ax = B.X;
ay = B.Y;
}
else if (l > 0)
{
ax += bxax * l;
ay += byay * l;
}
}
bxax = P.X - ax;
byay = P.Y - ay;
d = bxax * bxax + byay * byay;
if (d <= toleranceSq)
{
rem[j + 1] = 1;
j++; // when removed, transfer the pointer to the next one
}
}
// add all unremoved points to poly2
poly2.push(
{
X: poly[0].X,
Y: poly[0].Y
});
for (j = 1; j < plen - 1; j++)
if (!rem[j]) poly2.push(
{
X: poly[j].X,
Y: poly[j].Y
});
poly2.push(
{
X: poly[plen - 1].X,
Y: poly[plen - 1].Y
});
// if the first point was added to the end, remove it
if (addlast) poly.pop();
// break, if there was not anymore removed points
if (!rem.length) break;
// else continue looping using poly2, to check if there are points to remove
else poly = poly2;
}
plen = poly2.length;
// remove duplicate from end, if needed
if (poly2[plen - 1].X === poly2[0].X && poly2[plen - 1].Y === poly2[0].Y)
{
poly2.pop();
}
if (poly2.length > 2) // to avoid two-point-polygons
results.push(poly2);
}
if (!isPolygons)
{
results = results[0];
}
if (typeof (results) === "undefined")
{
results = [];
}
return results;
}
ClipperLib.JS.PerimeterOfPath = function (path, closed, scale)
{
if (typeof (path) === "undefined") return 0;
var sqrt = Math.sqrt;
var perimeter = 0.0;
var p1, p2, p1x = 0.0,
p1y = 0.0,
p2x = 0.0,
p2y = 0.0;
var j = path.length;
if (j < 2) return 0;
if (closed)
{
path[j] = path[0];
j++;
}
while (--j)
{
p1 = path[j];
p1x = p1.X;
p1y = p1.Y;
p2 = path[j - 1];
p2x = p2.X;
p2y = p2.Y;
perimeter += sqrt((p1x - p2x) * (p1x - p2x) + (p1y - p2y) * (p1y - p2y));
}
if (closed) path.pop();
return perimeter / scale;
};
ClipperLib.JS.PerimeterOfPaths = function (paths, closed, scale)
{
if (!scale) scale = 1;
var perimeter = 0;
for (var i = 0; i < paths.length; i++)
{
perimeter += ClipperLib.JS.PerimeterOfPath(paths[i], closed, scale);
}
return perimeter;
};
ClipperLib.JS.ScaleDownPath = function (path, scale)
{
var i, p;
if (!scale) scale = 1;
i = path.length;
while (i--)
{
p = path[i];
p.X = p.X / scale;
p.Y = p.Y / scale;
}
};
ClipperLib.JS.ScaleDownPaths = function (paths, scale)
{
var i, j, p;
if (!scale) scale = 1;
i = paths.length;
while (i--)
{
j = paths[i].length;
while (j--)
{
p = paths[i][j];
p.X = p.X / scale;
p.Y = p.Y / scale;
}
}
};
ClipperLib.JS.ScaleUpPath = function (path, scale)
{
var i, p, round = Math.round;
if (!scale) scale = 1;
i = path.length;
while (i--)
{
p = path[i];
p.X = round(p.X * scale);
p.Y = round(p.Y * scale);
}
};
ClipperLib.JS.ScaleUpPaths = function (paths, scale)
{
var i, j, p, round = Math.round;
if (!scale) scale = 1;
i = paths.length;
while (i--)
{
j = paths[i].length;
while (j--)
{
p = paths[i][j];
p.X = round(p.X * scale);
p.Y = round(p.Y * scale);
}
}
};
/**
* @constructor
*/
ClipperLib.ExPolygons = function ()
{
return [];
}
/**
* @constructor
*/
ClipperLib.ExPolygon = function ()
{
this.outer = null;
this.holes = null;
};
ClipperLib.JS.AddOuterPolyNodeToExPolygons = function (polynode, expolygons)
{
var ep = new ClipperLib.ExPolygon();
ep.outer = polynode.Contour();
var childs = polynode.Childs();
var ilen = childs.length;
ep.holes = new Array(ilen);
var node, n, i, j, childs2, jlen;
for (i = 0; i < ilen; i++)
{
node = childs[i];
ep.holes[i] = node.Contour();
//Add outer polygons contained by (nested within) holes ...
for (j = 0, childs2 = node.Childs(), jlen = childs2.length; j < jlen; j++)
{
n = childs2[j];
ClipperLib.JS.AddOuterPolyNodeToExPolygons(n, expolygons);
}
}
expolygons.push(ep);
};
ClipperLib.JS.ExPolygonsToPaths = function (expolygons)
{
var a, i, alen, ilen;
var paths = new ClipperLib.Paths();
for (a = 0, alen = expolygons.length; a < alen; a++)
{
paths.push(expolygons[a].outer);
for (i = 0, ilen = expolygons[a].holes.length; i < ilen; i++)
{
paths.push(expolygons[a].holes[i]);
}
}
return paths;
}
ClipperLib.JS.PolyTreeToExPolygons = function (polytree)
{
var expolygons = new ClipperLib.ExPolygons();
var node, i, childs, ilen;
for (i = 0, childs = polytree.Childs(), ilen = childs.length; i < ilen; i++)
{
node = childs[i];
ClipperLib.JS.AddOuterPolyNodeToExPolygons(node, expolygons);
}
return expolygons;
};
})();